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ABSTRA(CT

The Naval Postgraduate School has been conducting research into the design

and testing of an Autonomous Underwater Vehicle. One facet of this research is to

incrementally design a software architecture and implement it in an advanced

testhed, the AUV ]I. As part of the high level architecture, a Mission Executor is

being constructed using NASA's CIEPS version 5.0. The Mission Executor is an

expert system designed to oversee progress from the AUV launch point to a goal area

and back to the origin. It is expected that the Executor will make informed decisions

about the mission, taking into account the navigational path, the vehicle subsystems

health, and the sea environment, as well as the specific mission profile which is

downloaded from an otThoard mission planner. Heuristics for maneuvering,

avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies

(essentially the expert knowledge of a submarine captain) are required. The Mission

Executor prototype, SKIPPER, attempts to do this through the use of a three-tiered

reasoning system which monitors overall mission status, functional area status, and

vehicle equipment status simultaneouly.
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L INTRODUCTION

A. BACKGROUND

The development of autonomous underwater vehicles has been an ambition for

decades. Only recently, however, have practical autonomous underwater vehicles appeared

to be reality. Since the development of SPURV I (one of the first autonomous underwater

vehicles in the United States) at the University of Washington's Applied Physics

Laboratory in 1963, government and civil interest has been fueled by the potential for

many applications (Busby 90, p. 65). The hope is that the control system for the vehicle

will adequately perform the man-machine interaction that regularly takes place on manned

submersibles. Military interest over the last decade has increased, particularly with the

advent of tactical automated weapons and air reconnaissance vehicles. Recent events in

the Gulf War have validated the advances in automated weapons during the 1980's. As

Vice Admiral Stanley Arthur, Commander U. S. Naval Forces Central Command during

Operation Desert Storm, remarked (on Tomahawk cruise missile system effectiveness):

... target-arrival percentages look good. When dealing with a system such as
Tomahawk, all the details can be planned carefully. Then when the missile is fired,
the electronic gizmos take over. These integrated circuits do not get scaxrd they do
not forget; they follow orders well. The critics-who said Tomahawk would work
only on a single test range and that it would get lost in the desert--were wrong.
News reports seem to support the idea that attacks by robots have a unique
psychological effect on people. (Arthur, 1991, pp. 85-86)
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On the effectiveness of the remotely piloted vehicle, Pioneer I, Vice Admiral Arthur

also observed:

Remotely piloted vehicles proved to be marvelous, versatile devices. They allowed
the battleships to attack the enemy on their own, without the need for outside
assistance in spotting. Spotting by the RPV's not only allowed for accurate naval
gunfire support, but also provided instant battle damage assessment. The RPV
offers quick response and flexibility, because it is under positive tactical control and
has the ability to get below a low ceiling. Of course, the highlight of the war for
the RPV has to be the incident in which a remotely piloted vehicle flew over Iraqi
troops. By that time, the Iraqis knew what would be coming next, so they
surendered to the RN--presumably the first occasion in the history of warfare for
human beings to capitulate to a robot. (Arthur 1991, p. 86)

Several marine autonomous and remotely-piloted vehicles are already in use for

such diverse functions as underwater cable inspection, hydrography, and mine-hunting.

The practical advantage of low-risk to human operators coupled with the potential ability

to operate at over-the-horizon distances make the autonomous underwater vehicle a highly

desirable project. Although development of autonomous underwater vehicles has

progressed more slowly than the well-publicized air and land vehicles, advances during

the 1980's in artificial intelligence and robotics have proven to be monumental. As a

consequence, the Defense Advanced Research Projects Agency (DARPA) has been the

primary major funding source for the evolutionary advances made during the last decade.

(Polmar, 1991, pp. 122-123). Early research in autonomous underwater vehicles at the

Naval Postgraduate School centered around computer and control surface interfaces tested

in the first testbed, Autonomous Underwater Vehicle I (AUV I), a tele-operated

underwater robot. Efforts since that testing ended have focussed on an entirely

autonomous vehicle, Autonomous Underwater Vehicle 11 (AUV II).

2



Previous student theses at the Naval Postgraduate School have primarily

concentrated on the use of artificial intelligence in mission-planning and guidance control

of the vehicle. Cloutier investigated and developed a vehicle Guidance subsystem. His

subsystem provides fora proper vehicle configuration for path following fiom waypoint

to waypoint (Cloutier 1990). Ong researched and developed an extensive offboard

Mission Planning expert system. This was incorporated into an advanced simulator

developed previously (Ong 1990). MacPherson studied rule-based control of an AUV.

He implemented this control system in a simulator written in LISP under the Knowledge

Engineering Environment (KEE). Generic mission templates were developed for various

specialized mission profiles (MacPherson 1988).

The current generation of student theses attempts to take the development of an

intelligent control system for the AUV into the next increment of evolution. The baseline

diagram of the projected software system is depicted in Figure 1-1. Both intermediate

level modules (such as the pattern recognition and navigation software) and high-level

modules such as the mission planner/replanner and mission executor are now in

development Central to the high-level control is the Mission Executor described in the

next section. An advanced decisionmaidng capability is needed to make an autonomous

underwater vehicle (AUV) truly adaptive and survivable. The noted naval analyst

Norman Polmar recently surveyed the current advances and underscored the demand for

intelligent capability in vehicle technologies:

3
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The key to success in all the testing will be component or "enabling" technologies:
navigation, composite hull materials, guidance, energy source, propulsion,
communication links, and signal processing as well as the specific mission
packages. Advanced autonomous underwater vehicles will require enhanced sensor
and decision-making capability. (Polmar 1991, p. 123)

B. MISSION EXECUTION EXPERT SYSTEM

The control architecture of AUV H has undergone several phases of development.

Many methods of autonomous control are being used in vehicle testbeds around the

country. Some allow for layering of control in the vehicle while others maintain a more

traditional horizontal model of planning, execution and analysis. One general architecture

that has recently come of age is top-down flow of control ranging from Strategic level

control through tactical level to the low-level monitoring level (the level at which vehicle

software and hardware actually interface). Higher levels of abstraction perform some of

the activities (some time-sensitive) which require measured decision-making.

The Naval Postgraduate School's AUV control structure has undergone an

evolutionary development. Control in AUV I and early control structures in AUV HI was

essentially low level closed-loop. Incremental changes to the software design in 1990

necessitated the integration of a Mission Executor to integrate and coordinate intelligent

waypoint following and obstacle-avoidance. The Mission Executor functions involve

continuous real-time analysis and high-level supervision of vehicle systems throughout

the life of a mission. Thus the Executor must make real-time decisions, often in an
4I

environment of uncertainty or incomplete knowledge (Healy 1990a, pp. 177-183). While

not all situations can be completely provided for in the system, the ambition is to design

5



heuristics which make it possible for the Executor to deal with extensions of weil-known

problems.

C. SCOPE OF THESIS

The Mission Executor, in the broadest sense, must be able to safely control

movement between a mission starting point and a mission goal. In doing so, it must

operate between three models: that of the mission world, the vehicle world and the

environmental world. To supervise the vehicle world suggests that the Executor must

monitor and control vehicle "health" such as battery state, internal system pressure, and

temperature. It must also provide for response to deteriorating condition of the vehicle

sonar, navigation system, or guidance systems. The loss of a major onboard equipment

such as the sonar or navigation systems would probably be catastrophic and would at least

result in a mission degradation. The Executor must supervise the subsystem recovery

rocedue or make decisions that can circumvent the problem. Failing that it must make

a straegic-level decision to abort the mission.

Control of the vehicle in the context of the environmental world means reaction to

topological features such as undersea terain and obstacles (both moving and non-

moving), a significant change in atmospheric conditions, or any external threat which

would physically hinder the vehicle from making the transit to the goal point.

Monitoring of the mission world entails awareness of transition points between

normal rnsit and beginning a special mission profile. Possible speedMepth changes,

special req nts for inshore navigation, and deployment of any equipment must be

6



considered. Most imporutly, the mission priority must be balanced apinst vehicle

survival and reusability. Heuristics for this must be incorporated in the software.

D. THESIS ORGANIZATION

Chapter I is a survey of previous work on AUV control systems and related

technology. Current AUV software control systems at many different research facilities

are discussed. AUV research is classified by the types of software architecture.

Chapter M is a feasibility study of using the C Language Integrated Production

System (CLIPS) version 5.0 expert system tool as the development environment for the

Mission Executor. This chapter also includes analysis of the portability of CLIPS to

GESPAC, the AUV I's onboard computer.

Chapter IV is a description of onboard information processing. It details the

interactions between various modules of the software architecture outlined in the baseline

diagram, Figure 1-1.

Chapter V is a description of the prototype expert system architecture from a

theoretical stance. The development of layers of reasoning in software is highlighted.

Issues such as the proper combination of rules and objects, the role of uncertainty and

truth maintenance, and knowledge-database object persistence are discussed in the context

of the Autonomous Underwater Vehicle. Specific software constructs arm left to Chapter

VI.

7



Chapter VI is a description of both the Mission Executor consaucts and fte

Executor simulation. Rules which incorporate some special complexity or featur are

descibed in detail.

Chapter VII outlines contnbutions, conclusions and extensions; for further woiL



IL CONTROL FOR AUTONOMOUS UNDERWATER VEHICLES

This chapter is an overview of Autonomous Vehicle high-level control

development at other institutions and commorcial organizations. The various autonomous

vehicle programs are classified by software architecum. Differences and similarities to

the Naval Postgraduate School's testbed AUV H are discussed in the concluding

'umnmy.

A. LAYERED CONTROL ARCHITECTURE

1. Mam husetts Institute of Technology Sea Grant Program

Bellingham and Cons of the Massachusetts Institute of Technology have been

at the forefront of AUV research for the last several years. rhe Mrr program has worked

with Charles Stark Draper Laboratories and International Submarine Engineering on the

development of Sea Squirt I (Bellingham 1990, p. 23). This platform uses a Motorola

68020 processor. MIT Sea Grant is implementing a software architecture based on

Brook's layered control architecture (Brooks 1986, pp. 365-372). This architecture is

behavior-oriented, using the subsumption approach. The objective is to move away from

the traditional robot architectures which require a world model be incorpoated. This is

due to the AUV compaction problem: a small submersible cannot support high-resolution

sonar or an extensive, intelligent vision system. Consi and Bellingham argue that the

world model is then severely flawed, which may lead to incorrect or conflicting behaviors

(Bellinghan 1990, pp. 23-24). In the subsumption model, high-level behavion include

9



planning and monitoring while lower level behaviors are oriented toward the zeflexive

states. The software development itself is intriguing. Low-eder behaviors ae first

installed and verified in the testbed. When satisfactory performance is achieved, the next

level of complex behaviors is then added. Abstractly, the lower level is subsumed by the

higher level, but nonetheless carries out its behaviors in real-time. The architecture is

designed to be recofiurabl for different missions. (Belingham 1990, pp. 24,27)

Despite an initial retreat from the world model paradigm, the MrT group

believes it might be useful in complex missions to incorporate world modeling into high

layers. This would free lower levels to continue to operate in real-time as they must.

The overall architecture will become distributed for sensor processing. (Bellingham 1990a,

pp. 75-78) A diagram of the basic behavior layering is shown in Figure 2-1.

2. Internao al Submarine Engineering (ISE)

Int n Submarine Engineering (ISE) is currently cooperating with MIT

on the Sea Squirt research. International Submarine has previously developed several

software architectures for its series of ARCS underwater vehicles (Zheng 1990, p. 71).

Original work focussed on a software architecture based on the Navy watch team concept

of functionality. Control was based on the Cop tng Experts Paradigm, in which

sepaate modules for piloting, independent transit and collision avoidance all worked to

form a fused plan. After much experimentation, this was discarded as infeasible because

module functionality did not always correspond well to the many tasks that even one

human carned out. Further decomposition was necessary.

10
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ISE's new architecture is object-oriented and behavior-oriented, based upon

Brook's seminal layered control architecture of the mid-1980's. ISE incorporates rule-

based heuristics and learning through reflexive behaviors, logical behaviors and learned

behaviors.

3. The Analytic Sciences Corporaion/ Naval Underwater
Systens Center

The Analytic Sciences Coporation (TASC) and the Naval Underwater Systems

Center (NUSC) have developed a novel software architecture which combines aspects of

reAl-time layering, functional decomposition and subsumption. It is a new structring of

the traditional perception, analysis and action paradigm of robotic software. The software

architecture is being implemented in C++. (Schudy 1990, p. 9)

Unlike the division of functions in the Intelligent Mobile Autonomous System

(IMAS) in which each level carries a similar structure for conflict-resolver, world model

and level-specific function, the division of tasks in the NUSC(IASC architecture is non-

homogeneous both horizontally and vertically. It is divided horizontally into an analysis

hierarchy which is composed vertically of increasingly competent levels of assessment.

The bottom level is real-time while the event assessment at the highest level is decidedly

non-real-time. This hierarchy at each level functions as effectors for the tightly-coupled

planning and supervision sections of the Task Decomposition hierarchy. The planning

section consists in the levels of mission planning (highest), phase planning, task planning,

and action planning (lowest level). The supervision functional section is divided into

mission level plan execution (highest), phase level plan execution, task execution, and

12



subsystem supervision (lowest). Positioned between the analysis and planning areas is

a response system in which responses are merged and subsumption of behaviors occurs.

Thes hierarchies are separated from the low-level functions of sensory data, internal

moviworing and guidance control. (Schudy 1990, pp. 10-14) This is depicted in Figure

2-2.

Rather than just consider the division of function by functional level, there is

also decomposition by time. Real-time control only encompasses the lower levels,

monitoring and control in the most atomic sense and the planning/assessment that is one

level above that. The actual flow of control is very evident. The advantages of such a

system are that mission execution can be monitored at a high rate for low level behaviors

while, as in layered control, the high level behaviors such as planning and global

assessment are done at a less time-constrained rate. (Schudy 1990, pp. 13-14)

Unlike the strict layered control hierarchy, this system maintains a detailed

world model which consists of a vehicle internal model, an environmental model, and a

event assessment model. Like the layered control hierarchy, there is subsumption. Rather

than describing it in terms of competent behaviors, it is described in terms of assessment

and response. Assessment modules describe behavior in mathematical models (Schudy

1990, pp. 14-16). Response modules are intermediate to the planning modules and

incorporate behavioral alternatives.

Mission execution is carefully supervised by an overall mission execution

manager. In one sense, the overall mission execution manager is nothing more than a

high-level sequencer. The mission execution manager in turn supervises phase execution

13
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managers. Phase execution managers have responsibility for monitoring an entire phase

of the mission. These are intermediate mission executors which oversee the task

execution managers. In naval terms, the task execution manager can be described as a

special detail. It is the task execution manager's responsibility to ensure that a special

evolution such as turning at a waypoint is carried out. Further, the task execution

manager monitors a subsystem manager for each of the following environmental sensing,

navigation, guidance, communication and energy. (Schudy 1990, pp. 18-20) This software

architecture is one of the few to specifically mention mission execution as a high-level

control activity.

4. Marine Systems Engineering Laboratory

Marine Systems Engineering Laboratury at the University of New Hampshire

has been involved in AUV research for over fourteen years. The first underwater

autonomous vehicle developed was EAVE I (Experimental Autonomous VEhicle I) which

was completed in 1978. It was designed for cleaning underwater pipelines. In 1986,

MSEL was given a charter to develop knowledge-based AUV's which could render

complex decisions and operate independently. (Thus, the acronym for EAVE became

KB/EAVE.) EAVE is a larger class of AUV than the NPS AUV II (and similar small

AUV's) which is hardware-intensive: resident onboard are three Motorola 68000

processors for the lower level and VME 68020's for the higher level decision making.

Lowest level control, guidance and monitoring functions are carried out in the lower level

68000 processors. (Blidberg 1990, pp. 33-34)

15



Although the upper and lower levels of decision-making are coupled, MSEL

designed the lower level to be stand-alone in the event that strata independence was

necessary. The design of the KB/EAVE software system for the EAVE M generation of

vehicles is structured around data that is transformed from raw sensory output eventually

to knowledge for complex decision-making. This is achieved through functional layering.

Mission functions reside at the highest level while control functions are at the lowest

level This design is not wholly hierarchical in the sense that each level is divided

horizontally into data manipulation on one side and control on the other. This design is

depicted in Figure 2.3. The hierarchical division is based on time constraints. As in

many of the control architectures, the notion is to give the planning and assessment

functions more time while requiring guidance and direction motion control to operate

quickly. (Blidberg 1990, pp. 35-36)

The lowest level reads and controls sensors and activates control surfaces. In

the next higher level, the system level receives packaged data from the lowest level and

generates intermediate level commands. The environment level (just above) performs

navigation functions and planning based on goals received from the mission (highest)

level This level performs the tasking and uses the state of the vehicle at the environment

level to generate high-level plans. A philosophy that the system can artificially evolve

has prompted MSEL to attempt to build and test the lower level before it proceeds to the

next highest level (Blidberg 1990, pp. 36-37). This is similar in concept to construction

in Brooks's layered control architecture.

16
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The decision-making software in the higher levels uses what is known as

schema-based reasoning developed by Turner of the University of New Hampshire MSEL

group. These schema are essentially templates of reasoning and behavior which cover

such areas as reaction to critical situations, development and consideration of plans and

focus of attention (Blidberg 1990, pp. 39-41).

The MSEL KB/EAVE software development also involves using the Pbrtable

Common LISP Subset or PCIS. The effort to find a portable object-oriented LISP subset

was based on a need to find a programming environment that was independent of

hardware layouL While the C language is being used for numerically-intensive tasks such

as sensor data processing and guidance tasks in the two lower levels, intermediate and

high-level functions are targeted for development in PCIS. Part of the world model

(navigation/situation assessment level) is already functioning in the testbed. PCLS works

well because it does not have the temporal overhead usually associated with LISP. MSEL

describes it as "garbage collection compaction. " (Bowen 1990, pp. 221-226)

B. HIERARCHICAL CONTROL

1. Intelligent Mobile Autonomous System (IMAS)

Meystel of the Laboratory of Applied Machine Intelligence and Robotics

(LAMIR) of Drexel University and Isik of Syracuse University of have developed a

hierarchical model of control for a terrestrial robot vehicle under development for the

Belvoir Army Research and Development Engineering Center (Isik 1990, pp. 241-242).

Although this involves a wheeled surface vehicle with a vision sensor system, the Nest
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Hierarchical Control paradigm is applicable for subsea autonomous robots with sound

ranging sensors. It provides both sufficient redundancy and layering of automated

reasoning, as the following description and Figure 2-4 suggest.

The software is divided hierarchically into the planner, navigator, pilot, and

actuator/controller levels. Each level has its own separate sensor bank for perception, a

map for world model reasoning, and a reporter for intelligent control. The functional unit

itself (planner, navigator, pilot and actuator/controller) has its own database, rulebase and

evaluator. Each stratum has a different level of resolution for its sensors. Data conflicts

are resolved via what is known as resolution relevance. The Reporter module in each

struau performs the conflict resolution. (Isik 1990, p. 242)

The rule base is modeled as a production system. Fuzzy set theory is used in

the controllers to describe relationships and control actions within and outside of the

vehicle. The global view of the environment via the vision system is used in the top two

layers while the Pilot level uses a local or "windshield" view to guide the vehicle along

the planned path (Isik 1990, p. 242-243).

2. SINTEF SACOR Project

SINTEF Automatic Control of Trondheim, Norway has developed several

robotic vehicles over the past several years. The current vehicle being used is the

SPRINT 101, a tethered vehicle. This is a data-autonomous vehicle with six sonars which

receives power via an umbilical cable. The software resides on a 68020 processor.
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SACOR is an acronym for Software for Autonomous Control of ROV90. Softwar is

being developed in C++ and currently resides on SUN workstations (Rodseth 1990, pp.

15-18).

SACOR is actually a software design in two parts. The administrative section,

known as ASACS (Administrative System for AUV Control Software), sequences and

controls the flow of data in the system. The software is object-oriented. Modules, which

are abstracted behind data structures, cannot communicate directly. They must pass data

through strict interfaces. This is principally the object-oriented paradigm. ASACS is

essentially a hierarchical system. The database controller interfaces modules to state

variables. Progress in status is compared to desired goals. An event handler geneates

an object for each event and schedules it for transport to the correct module. A

monitoring unit known as the Watchdog conducts error checking of vehicle internals and

navigational progress. The Captain module is a simple sequencer for the mission plan.

The plan itself is a hierarchical structure of state variables and conditions under which

they are activated (Rodseth 1990, pp. 15-17). The dataflow and control is diagrammed

in Figure 2.5.

Modules are either update or action modules. Action modules channel

commands from the highest levels down. Modules on lower levels outweigh those in

higher levels. (Presumably this is because lower level modules am real-time directors of

action.) New goals are developed through plan conflict resolution. Update modules

provide information fron sensors attached to actuators and may direct action across a

range of state variables (Rodseth 1990, pp. 18-20). Rodseth's description of the current
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implemenminindicaes that this saftware is not yet mature. Navigation is conducted

by a dead-reckoning device rather than a onbination of dead-reckoning and somar

cmp as in de NPS AUV IL Speed, heading and depth can be controlled. A

waypoint dtemination module allows for computation of the speed and heading to gain

the next waypoint.

It is interesting to note that SINTEF project designers have noted for possible

future work the developmn t and integration of an intelligent captain which could reason

about decisions and an intelligent watchdog for the, vehicle internals (Rodseth 1990, p.

23). This is essentially the idea of a Mission Executor as outlined by the Naval

Pstgraduate School.

C. HYBRID MODELS

L University of Karisuhe Robot Project

Rembold and Levi have been directing research at the University of Karisruhe,

Germany into the control of autonomous vehicles with the 4-wheeled MOBILE ROBOT

(Rembold 1986, pp. 79-80). They partition the control modules into a world processor,

the planning and execution processor, and sensor processor. Rather than a pure vertical

or horizontal hierarchy, Rembold and Levi describe their flow of execution as a hybrid

of both. The real world model and the sensr module cooperate in providing the

intof sensory output and in storing the vehicle internal world. The planning

and execution processor allows for comparison of a real-world scenario with the curmt
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scenario to determine the action to be given to lowe levels of guidance and control The

decision-aking framework is a bierroical, almost wee-like rule-based structure

(Rembold 1986 pp. W083).

Levi and Rembold also require the software control system to do a limited

mount of learning and to operate with incomplete information. MOBILE ROBOT must

operate in an idsa envir ent and thus must be able not only to tnsit to the

desired work ara, but also to perform assembly tasks. (Because only the first mission

is relevant to AUV at this point, only the transit execution will be coverd.) The world

model which MOBILE ROBOT depends upon has both static fixed obstacles and moving

obstacles (Rembold 1986, pp. 81-84).

The vehicle planning and execution is carried out by a hierarchical conuol

system very nearly like Isik's and Meystel's thm-ter hierarchcal control model

Command flow and eneration ar executed in the classic waterfall method. A global

path plan and executor is responsible for the highest levels of decision-making and

adap tion. An expert system at the highest level determnines the route using a cube-based

representation of free-space. The global path planner must transform parameters of

decisions band on the overall route, obstacles or obstructions, and path constraints

(percenap deviaton allowed for various missions) into cartesian coordinates through an

ie diat sequencer. This in turn passes the geometric coordinates to the Naviptor

expert system module which must control and intepret sensory output for navigation and

reconition of various obstructions and provide adaptability strategies for local deviadons

to th path. Caesi coordinates ae trslated to vehicle subsystem actions which are
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in tumm passed to the pilot level (which corresponds to the NPS guidance level). An

expert system actually coordinates vehicle actions at this level to avoid contradictoy

guidance system actions (Rembold 1986, p. 85). The software architecture is shown in

Fure 2.6.

2. Procedural Expert System (Esprit Project)

Procedural expert systems art the object of this cooperative research between

the University of Amstedm and Framentec of Paris on an industi robot (Meijer 1990,

p. 65). Essentially what has been constructed is a mission executor. Meijer and his

colleagues have constructed a model known as the Exception Handling Model A stack

structure is used to store the current operations that the robot is performing. The

operations that the robot can perform are classified according to complexity. As with any

robotic application, planning and initial scheduling is conducted offboard the robot.

Adaptive scheduling is generally required, as well as generation of recovery plans, to deal

with any interruption to the preplanned operations (Meijer 1989, pp. 65-66).

Th Exception Handling Model attempts to achieve the planned behavior and

ovidesa series of prioritized strategies for recovery. Like many other robot models, it

structures them in heuristics around the genad functions of monitoring, diagnosis and

response in a loose hierarchy. Fault trees are used in the diagnosis part to trace a

component falure. Recovery plans are generated from this. Each possible strategy is

checked for feasibility. The system will default to a rescheduling mechanism if recovery

with the cunt goals is not possible (Meijer 1989, pp. 66-67).
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The Procedural Expert System itself is proWammed in LISP and consists of

a knowledge-base which contains the vehicle and environmental model states and the so-

called Knowledge Area. These are essentially structures similar to rules which have

prerequisite facts that make up an interface. These have associated with them some type

of procedural code. This is the Procedural Expert System's method of encapsulating

general plans and domain-specific plans. It is very nearly a paradigm of polymorphism.

A stuctum similar to an inference engine selects the Knowledge Area to be executed

depending on its facts being resident in the knowledge bpae. Goal-achieving Knowledge

Areas can essentially invoke one another in a fashion similar to the classic forward-

chaining mechanism of rule-based systems. Constraint-based backtracking is available

to assist in truth maintenance for the knowledge-base (Meijer 1989, pp. 70-75).

Exception-handling is structured into knowledge areas specifically designed for

that purpose. These invoke the regular task achieving knowledge areas (Meijer 1989, pp.

70-75). Although stack - Knowledge Area interaction is not explained in detail, there is

mention of pursuing new goals should that become necessary. In that case, the next

available goal would be removed from the stack for activation. Tasks have a hierarchical

flavor, yet the underlying reasoning is not developed into a true hierarchical software

architecture.

D. SUMMARY AND EVALUATION

This limited survey of AUV software architectures indicates that ther is some

conceptual agreement in architecture but wide division in implementation. Rule-based
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systems are popular, but are implemented in different fashions. Subsumption is part of

several architectures, yet it is not effected in the manner that Brooks originally devised.

The TASCINUSC model is most similar to NPS AUV I1 in turms of Mission Executor

design. However, the TASCNUSC model makes a further division for task execution

managers which the NPS model does not. The TASCINUSC model implies that there is

an object or module to monitor each of the critical evolutions. SINTEF Crporation's

object-oriented AUV model, SACOR, has similarities to the NPS AUV H1, but it assumes

a more distributed mission executor. Actually, there is no distinct module known as the

executor in SACOR. Most of this functionality is derivable from the Watchdog and

Captain modules. Unfortunately, the Captain module is merely a sequencer with no

intelligence, heuristic or otherwise (although intelligence is planned for possible

incorporation as the project matures).

The layered hierarchical control models, while presenting a non-traditional approach

to robotics architecture, present a very credible method of testing software. While all

researchers may not agree on Brooks's subsumption of behaviors model, the incremental

addition and verification of the software is currently being carried out in AUV U.

Division of decision-making and control in AUV I is evident in only two explicit layers.

Implicitly, the navigation module, pattern recognition software, vehicle condition

monitoring module, and guidance module are all in an intermediate level Thus, one

might be able to infer that the hierarchical models might be closest in design to AUV IU.

Most of these, however, have software redundancy in each layer as Isik and Meystel's

InteliM nt Mobile Autonomous System (IMAS) does. The NPS AUV II software
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architecture would best fit in the hybrid category. It is not strictly hierarchical nor is it

a layered control/subsumption model. Clearly, it is not the uaditional horizontal model.

The current implementation of the Mission Executor (as later explained) is situation-event

based. Combining this aspect with the hierarchical structure, one must conclude that the

NPS AUV il software is a new variety of the hybrid model.
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III. THE C LANGUAGE INTEGRATED PRODUCTION SYSTEM

This chapter provides an overview of the C Language Integrated Production

System (CLIPS) and the arguments for its use as the ongoing tool for construction and

extension of the Mission Executor of the Autonomous Underwater Vehicle in both

simulation and the actual testbed AUV IL

A. MAIN FEATURES

CLIPS was developed to meet the need for a low-cost, portable, rapid prototyping

tool which could be used in the construction of both real-time and non-real-time systems.

The effort was begun in 1985 at the NASA Johnson Space Center with construction of

a prototype. The intent of the design was for CLIPS to mimic features of both the

Automated Reasoning Tool (ART), the List Processing (LISP) language and Official

Production System 5 (OPSS). The Software Technology Branch at NASA was essentially

successful in this venture. CLIPS version 3.0, the first to be released to users outside of

NASA, was distributed in 1986. Since that time, the expert system has undergone several

revisions. CLIPS is a forward-chaining, rule-based tool which, like the production systems

it is based on, uses the Rete algorithm for pattern matching and inferencing. (NASA 1991,

pp. xiii-xiv)

CLIPS rules are generally constructed of facts in the relation-attribute and associated

value form on the left side of the production arrow ( => ). The asserted facts which are

produced are placed on the right-hand side. Figure 3.1 depicts a sample defrule which
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may be found in the Mission Executor system. Facts may have constraints placed on

the values. Logic expressions such as conjunction, disjunction and negation (in the form

of and, or, not) may also be attached to them. CLIPS allows for efficient pattern-

matching on variables on the left-hand side. Procedural statements such as If...then...else

and while-loops are available. Truth maintenance is available through the use of the

lica/ construct to assert a fact (or facts) which has a dependency. Retraction of one of

the original left-hand side facts removes the support for that assertion. This is illustrated

in Figure 3.2. A substantial numeric function library is available for logical comparison,

some conversions of standard units to others (degrees to radians and vice-versa), and

special numeric evaluations. CLIPS input and output (I/O) is very similar to LISP and

the Common LISP Object System (CLOS). Formatted input and output is nearly identical

to LISP. (NASA 1991, pp. 5-47)

Earlier versions of CLIPS did not include any object orientation or user-defined

functions. User-defined functions had to be written in the source language. Version 5.0

now includes the CLIPS Object Oriented Language (COOL) which exhibits properties of

both SmallTalk and CLOS, and user-defined functions. It supports a frame hierarchy of

classes and objects. Presently it only supports specialization inheritance (although there

is a way to emulate generalization). Like other object-oriented systems, CLIPS 5.0

provides inheritance and strict interfaces (message-handlers) for accessing the data in

objects. Procedural constructs such as daemons may be attached to objects and fire upon

basic actions such as initialization or modification of slots in an object. Impressive
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(defrule monitor-batery

(action monitor)

(current-time ?time&:(> ?time ?*guardline*))

(assert (battery time-critical))

(assert (guidance shift-power-source)))

This rule is typical of an automated control-type rule

?ime is a constrained variable. This rule will only fire if
?time is greater than the global variable ?*gurdinc*,
which must be elaborated at run time.

On the right-hand side, two facts are asserted. The
second one is typical of a control fact. It causes another
module to execute another rule (semantically-linked).

Figure 31. A Sample CLIPS Rule
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(defrule Continue-unresticicd

(logical (equipmenLstatus normal)

(navigazion-status withinjtolerance)

(maneuvering-status normal)

(spec-nission-status feasible)

(enviornment-status normal))

(assert (overall-mission-status Continue-unrestricted)))

Nf any of the five facts on the left-hand side are reutrwd the
consequent overall .jsin-tatus will also be renuated.

Figre 3-L. Use of the CLIPS Truth Maintenane Construct
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polymorphism allows even a casual programmer to create a defmedwd which will operate

differently when presented with arguments of different types. (NASA 1991, pp. 5-18)

Efficiency in CLIPS is due primarily to the use of the Rete Algorithm. A recent

synthetic benchmark conducted by Mettrey at Bell-Northern Research demonstrated that

systems using the Rete Algorithm were substantially more efficient and faster than their

competitors which used a different pattern matching scheme. Writing conditions that

specify a rule is instantiated only if a pattern cannot be matched by any fact in the

knowledge base is a powerful feature of the Rete-based tools. Temporal redundancy, a

common cha csic of knowledge-based systems, is used to great advantage by Rete-

based tools. Rete saves repetitive information on nodes and propagates only changes, thus

increasing efficiency. (Mettrey, 1991, pp. 19,30)

In addition to low cost, CLIPS has been designed with a get deal of flexibility.

It has many features of more expensive tools, including the following:

* CLIPS does not require the entire environment to be available on the operating
syssem to run an application. Executable modules can be created which allow
ecomonical delivery of the application. (Riley 1987, pp. 33-40)

- CLIPS is portable to any environment supporting a C compiler.

- Seven diffenmt conflict resolution strategies are available rather than just
depth-first-search. (NASA 1991, pp. 28-31)

CLIPS's only apparent weakness is an absence of pattern-matching on the left-

hand side for objects in CLIPS Object Oriented Language (COOL). Some NASA
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programmers readily admit that this is an impediment in some applications. On the

other hand, there are work-around solutions to this.

B. DEVELOPING CONTROL EXPERT SYSTEMS IN CLIPS

The need for a low-cost tool such as CLIPS is evident by its widespread use in

the government, commercial, and academic communities and by the proliferation of

software systems constructed in CLIPS since it was first released. A recent advisory

released by the NASA-Johnson Space Center indicated that over 3000 users are

programming in CLIPS (NASA 1991, p. xiv). The range of applications has included

robot control expert systems, advisory systems, intelligent tutoring systems and

numerous embedded applications. As this research is primarily directed at high-level

control, a small sample of some of the control applications completed or in development

follows.

Case Western Reserve University's Center for Automation and Intelligent Systems

Research developed a model-based space station autonomous power control system in

1988. The simple model used, essentially a terrestrial one, requires the power control

system to dynamically schedule many power loads for a station with but a single power

source. Three phases of power control are modeled: a normal phase, an emergency

phase, and Oh recovery phase. Heuristics are embedded in the rules which deal with

predictions and consequences of possible load failure. The operator is warned of

impending failure as the system moves through phases of warning, critical and failure.

I the operator takes no action, the system will automatically shed the failing load.
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Only seven basic supervisory rules arn used to control the system. Al use very basic

CLIPS patterns and virtually no frame-based templates or complex objects. (Vezmna

1988, pp. 211-220)

The Center for Engineering Systems and Research (CESAR) at Oak Ridge

National Laboratory has implemented a robotic expert system in CUPS version 4.0

which allows a robot to find and operate plant controls in a hostile atmosphere such as

a smoke-laden control room. The object of this was to implement machine learning.

(Spelt 1989, pp. 8-15)

Elcee Computek Incorporated has been developing a guidance system simulator

known as KMARS (KnowledgeGeomety-based Mobile Autonomous Robot Simulator)

for robotic vehicles. This includes both a knowledge base (written in CLIPS 4.3) and

a geometry base. The simulao plans and executes motion for a point robot in a two-

dimensional environment. The expert system calls C language functions to execute

procedual activities. The expert system attempts to determine if a geographic goal

can be located by a limited range sensor. If the goal cannot be "sen" by the sensor,

a subgoal is created. When the point vehicle reaches the subgoal area, the vehicle

sensors are again activated to se if the goal can be detected. The overall purpose in

this system is to explore unknown environments with little a prioi knowledge (Cherg

1990, pp. 822-830). This appicato is similar in nature to the general autonomous

unerwater vehice problem and is one mor indicator that CLPS is a prop tool for

this aplicadon.
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C COMPARISONS AND DENqCHMARK

The recent virtual explosion of available expert system tools has made selection

of the approprat tool for an application a daunting task William Metty of Bell-

Northern Research recently compared five well-known tools [ART-IM, VAX OPS5,

Level 5, KES) for adaptability and support of the these commonly desiWe

chmmnca

knweg*e - iton
*inference

* deveopmen env ironmients

*delivery envmmements

*support (Mletty 1991, p. 19)

Metvey found the hnfrencing capabilities of CLIPS to be very suang. The Rete

algorith. upon which it is based is a very appealing and efficient algorithm. Despite

this, Mewey criticizes CLIPS for no having fram-base reasoning. (At the time of

publishn& Clips version 5.0 with the amS Object Oriented Language bad not yet

been released.) Further, the development environment is niot as advanced as some of

the other tool (Meurey 1991, pp. 20-21). CLIPS 5.0 is curtently being updated to

* include a mor advanced dvlpetenvironment with a mouse-driven interface.

Naturally, thee was a stiong tendency to measure less esoteric facets of the

devlopenttools. Mettey devised a synthetic benchmark that consisted of typical
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rules, consisting of object-attribute-value facts (some with constraints) on the left side

and fact assertions on the right side, which an commonly found in rule-based export

systems. Seven different cases were examined. In the first cae, twenty-five typical

rules were placed in the program. Tuning began at run-time and ended at 250 rule-

frings. The number of rules inserted and the rule-firing termination point were

increased by a factor of two in each of the succeeding cases. Tuning analysis was

conducted on a Sun 3 wodmstno, a Macintosh I, and a VAXstation 3100. Knowledge

Engineering System (KES) and CLIPS were first compared on the Sun 3 workstation.

CLIPS outperformed ICES quite dramatically : a ratio of 12.7 to I in speed on the low-

end case, and 19.5 to I in the high-end case of 200 rules with a termination point of

2000 rules. On the Macintosh U, CLIPS performance over Level 5 was less dramatic

but still signifcant. VAX Official Production System 5 (OPS5) performance on the

VAXstation 3100 was marginally better than CLIPS. CLIPS fired rules slightly faster

than the Automated Reasoning Tool for Information Management (ART-IM). This is

interesting inasmuch as CLIPS was designed aound the characteristics of ART in its

original form although NASA claims that no actual ART source code was used.

Meutmy notes that Inference Corporation, which developed ART, later used CLIPS as

the base for its developmet of ART-PA. (Mettry 1991, pp. 22)

Although the benchmarks were useful in determining performance among the

tools, a metric such as this is of limied value. Extensions on performance in all types

of sysms canmt be F edicted on the basis of this evaluation. Theories of rule

groupings have evolved which indicate that perrmanc may be drastically changed by
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the order in which rules ar grouped in a rule-based program. One of ft four expert

system tools evaluated, Level 5, does not use the Rete algorithm.

Nonetheless, what can be observed from Mettrey's benchmark is that CLIPS, for

its cost, is the best forward-chaining expert system tool among those evaluated.

Further, version 5.0 (and its forthcoming subsequent version) has an object-oriented

systems which is more tightly coupled than ART-IM, which lacks a few of the

commonly recognized object-oriented features such as multiple inheritance.

D. PORTABILITY

As this is a specifically stated goal of initial CLIPS development, it is not

surprising that portability is a notable strength. CLIPS can virtually be used in any

environment which supports a standard C compiler. Mettey's synthetic benchmark

described above used CLIPS as the standard of comparison because it was the only tool

which ported to all three versions of hardwan previously described (Mettrey 1991, pp.

28).

CLIPS applications can be completed as compiled run-time modules in C or in

the interpreted mode of the full CLIPS environment. As the environment is not large

(currently less than I megabyte) and the speed-up of the compiled version only slight,

in many applications it may not be to much advantage to convert to a compiled version

except to save memory.

Further supporting wide portability is the fact that CLIPS comes with its source

code. It thus can be customized for virtually any application. The CLIPS Advanced
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Programming Guide gives explicit instructions for creating rum-time modules and

embedding CLIPS in applications in which the main program is written in C, Ada or

FORTRAN. Run-time modules are created by first compiling the CLIPS source,

loading all files of an application to the CLIPS environment, and then using a command

known as constucts-to-c to convert the total application program to a series of C files.

After modifying the header files, the CLIPS source main program is modified and the

CLIPS modules linked together. The run-time modules are not suitable for an

application which has the build/eval functions (NASA, 1991b, pp. 99-104). Thus, if an

Artificial Neural System is to be simulated, it must be achieved through dynamic

salience only.

Embedding an application requires a similar approach. CLIPS user-defined

functions may be called via the CLIPS Function Call. Constructing objects requires the

CLIPS Make-instance call in the source language. After the Load Constructs command

is given for all of the CLIPS functions, the newly created C files are linked (NASA,

1991b, pp. 35-98). Porting an embedded application, like a run-time module, is

relatively simple.

The GESPAC MPU30HF with Motorola 68030 CPU currently used in the AUV

is well-suited to handle C-based tools. Thus, porting the Mission Executor should not

be a monumental task. The current vehicle software is ported via RS232 interface. The

OS-9 operating system is designed as a multi-processing environment and thus can

easily support CLIPS.
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IV. ONBOARD INFORMATION PROCESSING

This chapter examines the data flow between the Mission

Executor and other modules. The Mission Executor receives its path constraints and

baseline commands from the proposed interfaces to cooperating modules (depicted in

Figure 4-1) are discussed.

A. DOWNLOADING POSTURES AND COMMANDS FROM THE MISSION

PLANNER

The offboard Mission Planner was successfully implemented by Ong (Ong 1990)

and is being extended by Caddell (Caddell 1991). It provides a best three-dimensional

path-to-goal given chart features of the region in which it is to operate, time

requirements, and special path constraints. The Mission Executor's most important

functions in a normal transit ae to receive waypoint and command data (denoted as a

path) from the Planner, interpret the movements, convert the path postures to reference

postures, and properly sequence the movement. The path data ae passed to the

Executor in a file. The Executor converts the plan to a series of waypoint objects and

then begins the monitoring of these objects. The other functions which the Executor

carries out, while important, we generally exception-handling relative to normal

orons.

This is not to categorize the Mission Executor's interplay with the Planner as

simply one of a conversion unit serving a high-level planner. The Mission Executor
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must mason about these waypoints and the associated speeds. If the original

commanded speed for a particular waypoint is no longer valid due to an unplanned

deviation from course, then the Executor must call the Navigation module for an

updated speed to get to the goal on time.

B. UPDATING FROM THE OBSTACLE AVOIDANCE DECISION MAKER

Conceptually, the Obstacle Avoidance Decision Maker has the responsibility for

processing packaged sonar data from the pattern recognition module and relating it to

specific obstacles. Decisions on both the type of obstacle (moving or stationary) and

the avoidance maneuver (decrease-speed, increase-speed, dive, ascend) are determined

and passed to the Mission Executor. One proposal for the manner in which it will pass

data is an obstacle alert-and-direction flag followed by a template of the form:

* obstacle identification

" relative distance

" relative orientation

. time

* movement

* parameters of movement

The direction flag is sent merely to alert the Executor to a real-time report.

Receipt of the template data allows the Executor to call the RePlanner with the

information while also flagging Guidance to be ready for imminent receipt of new
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reference postures for the new path-to-goal referenced to a new origin (the current

geographicalposition). A low-level reflexive response can also be passed directly to

the guidance controller bypassing the Mission Executor in the case of an unplanned

obstacle close-aboard (Healy 1990).

C. UPDATING FROM THE SONAR MODULE

The Mission Executor normally depends upon obstacle identification and

orientation data passed from the Obstacle Avoidance Decision Maker. Thus, sonar data

from the pattern recognition module is filtered through the Obstacle Avoidance Decision

Maker. Currently however, this is only a conceptual framework as the Obstacle

Avoidance Decision Maker has not yet been fully realized. To bridge this temporary

software gap, a proposal by Floyd to pass a four-bit flag directly from the pattern

recognition module has been implemented (Floyd 1991). Depending on the pattern

received, the Mission Executor will opt for a right turn, a left turn, an ascent, or any

combination of these for gross avoidance. It will then request a new route plan from

the RePlanner if there is sufficient need. Consideration of all features of an object, as

in the template described above, cannot be achieved in this configuration without the

intelligence provided by the Obstacle Avoidance Decisionmaker.

Therefore, the granularity to determine if an obstacle requires a sigmfican

deiison from the original track such that a new route must be planned becomes quite

come. The Mission Executor takes this into account when performing the so-called

"sensibility check" when the RePlanner provides a new route. The presence of any
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obstacles on the new initial leg is quickly checked. More importantly, however, the

current gross vehicle energy state is balanced against the distance-to-go along the new

route. Nonetheless, due to the weakness of this method without the intervention of an

Obstacle Avoidance Decision Maker, there may be several crossover situations in which

a small deviation from the original path may unnecessarily cause a new route to be

planned. This is not cause for concern in the AUV U's testing environment at the NPS

pool because the turns are 90 degrees by defaulL Further, the pattern recognition

software has the ability to disregard obstacle features which may be distorted while

changing heading, thus avoiding an even great error in maintaining the desired path

(Floyd 1991).

D. INTERFACE WITH THE REPLANNER

The RePlanner, a knowledge-based path-planner which uses an optimized real-

time A* search, attempts to plan a new path-to-goal based on knowledge of the goal

state, the current geographical location and special path constraints passed by the

Executor. It operates in four dimensions: three standard cartesian dimensions and a

fourth dimension of heading or azimuth (Bonsignore 1991). The RePlanner receives

periodic updates from the environmental database, allowing it to replan the new route

from any specified origin.

The RePlanner is alerted to the need to replan by a function call from the

Executor. A flag and the coordinates of the current location are transferred to the

45



RePlanner. It constructs a new plan in the same manner as the Planner, using a prioi

knowledge of the environment. A file of new waypoints is reurned to the Executor.

E. UPDATING FROM THE VEHICLE CONDITION MONITOR

Curently, the Vehicle Condition Monitor is not modeled at the real-time level.

The vehicle's internal world is modeled as a set of sensor objects which measue the

subsystem components. Objects ae instantiated for power sources such as the ray of

batteries for subsystem power and propulsion support, control system indicators for

rudders, planes and propellers, sonar power status indicators for the four onboard

sonars, onboard computer temperature sensors, navigation instrument fault sensors, and

power sources for environmental sensors. These have default guard-line and red-line

ranges which, when violated, cause an alarm to be sent to the decision-making levels.

An automated turn-key operation is first generated which attempts to balance an

equipment failure or impending failure by bringing a redundant system on-line, if such

redundancy has been provided. If the equipment is critical, it may degrade the mission

status to continue-mission-restricted or to abort-minssk,..

The data interface must conform to strict object interfaces, as the subsystem

sensors are modeled as objects. Each object is queried by its own appropriate message

sent at regular intervals from the Executor. A message-handler checks the subsystem

sensor object's slots to see if an operating parameter such as a temperature or power

level falls within he guakdline range. If it does not, the appropriate response is
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genead. This may initiate the turnkey operation or may just cause the Executor

decision makers to be noified. The object hierarchy is pictorially described in Figure

4.2.

F. INTERFACE WITH THE GUIDANCE SUBSYSTEM

The end result of the Mission Executor functions must be a series of reference

postures and commands to the Guidance subsystem. Guidance is an intermediate-level

functi which has an algorithmic reasoning system within it. It conveM high-level

decisions and reference postures to low-level commanded postures for the Autopilot

module. A function call within the rules of the Mission Executor generates an alert to

the Guidance module to prepare for receipt of data and commands. The refem

posture is modeled as an object and so passed to the Guidance module. Commands

from the Executor to Guidance are sent as flags.
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V. DESIGN OF THE PROTOTYPE EXPERT SYSTEM

This chapter explores the design of the prototype, interface limitations,

and the justifications for use of several of the software constcts. This design is

inmtended to cover most AUV situations, but the current implementation is not

conded in any fashion to be fully cmrehensive.

A. PHILOSOPHY OF DESIGN: REASONING ABOUT SEVERAL WORLDS

The current NPS AUV II architecture is the result of an incremental development

which began in 1988 at the conclusion of research for AUV I. Evolutionary changes

in subsequent software desig- -tiulted in the need for a high-level control module. The

Mission Executor, SKIPPER, attempts to fill the role of high-level director while

integrating decisions based on input from three worlds: the vehicle's internal systems,

the external environment, and the mission itself.

Simply put, the Mission Executor operates on more than one layer of symbolic

reasoning. Decisions are modeled heuristically rather than in a strictly algorithmic

fashion. High level decisions require a knowledge of the status of low level items to

get a "sense of the system" and assess whether a mission can be carried out, which is

the ultimate goal. The low level events then drive the broader decisions. The

requirement to model this lends itself naturally to a hierarchical design, but one that is

priority-situation based. Most AUV guidancelcontrol systems ame dosed-loop and are

equipped to deal with routine maneuvering. The Executor exists mainly to deal with
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exceptions to normal maneuvering which cannot be dealt in a srictly algorithic

fashion. Its reasoning results in interrupt commands to guidance which conuols the

autopilot If ther am no deviations from the track caused by any of the three worlds

that AUV must deal with, then the Executor merely fulfills a role of sequencer of data.

The current implementation allows for the interface of system monitor functions which

often are found on lower levels in other systemL However, as the currt AUV II

architecture does not char the lower levels with this responsibility, both the

interediate and high level monitoring tasks are delegated to the Executor for the

present. (This is expected to be replaced by an intermediate level module which

responds to analog-to-digital outputs.)

Although not all experiential knowledge may be encoded in rules, there is reason

to believe AUV missions can be bound at least for the time being. Some preVious

rseach has suggested that AUV behaviors might in fact be smndardized. The

University of New Hampshire's Marine Systems Engineering Laboratory (MSEL) and

the Naval Underwater Systems Center (NUSC) cooperated in the research of some

stmndard situations in which an AUV might find itself. The resulting matrix entitled

"Generalized Problem vs Contingency Alternatives Matrix" they derived is interesting

for its philosophy. Situations are classified in three categories of problems: minssion,

environment, and internal Miures. These have a one-to-one conpode ce with the

three worlds that the NPS Mission Executor is trying to model at a high level. The

authors, Westneat of MSE- and Clearwater of NUSC, determined that the AUV

control system must be able of some limited decision-making for a (relatively) short

50



mission. Longe missions will require some form of machine learning which will not

necessarily involve a neural ne. (Wesmeat 1991, pp. 29-33) Figure 5-1 shows a

facsinle of the NUSC matrix.

This view of high level control as essentially handling excepti to normal transit

and operations i embodied in the Mission Executor. Some of the implications of the

matrix merit seriusonsidrtn while others an simply beyond the scope of curen

oachnolo. Vehicle self-re is highly unlikely in a mechanical failure situation

unless this tem refers only to equipment which has a redundant system or power soucm

available.

To implement the design described shortly, a number of assumptions about

external modules are made. As some external modules remain to be completed,

external module interfaces such as those described in Chapter IV ae modeled as data

files suevind by control rules. Scenarios we impned by instantiated data from

the files much as the expected module would perform. Fles exist to model a module

operating in two modes: (1) supplying data driven by demand from the Executor and

(2) supplying data driven by events Examples of type one are a command from the

Executor to d Navigator module to provide the current location or a command to the

RePlanner iD provide a new list of waypoint posturs. Event-driven data we inputs

such as th initial list of waypoints from th offbomu Mission Planner, obstacle data,

and navigation repo cha waypomt data. This is depicted in Figure S-2.
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The basic overall design consists of a knowledge base of rules, facts, and objects.

This knowledge base, although currently stand-alone, is expected to interact with

modules such as the Obstacle Avoidance Decision Maker, and call external modules

such as RePlanner and Guidance. Figure 5-3 describes in a simple graphical fashion

the overall schema for the Executor:. a base of rules exists for each functional (i.e.,

situational) ae. maneuvering, navigation, subsysten-monitoring, enirmntal, and

specialid mission. The rules inmact with the object base and cache of facts to

produce the required guidance commands. Several global variables are used to

represent performance parameters.

The rule base is instituted in a hierarchical fashion. The Overall Mission Assessor

tabulates the status of each functional area. If no deviations occur during the course

of the mission, the mission status remains at its default status, continue.unrestricted.

It views each area in two levels: critical and failure. The critical level indicates that the

functional area has suffered some sort of restrictive, non-catastrophic loss of capability.

This can be on the order of loss of non-mission essential equipment or a temporary

maneuvering restriction such as a obstacle avoidance which takes it from its principal

direction of traveL This results in a mission status of continue ith restictons. The

failure level indicates that the functional area has suffered a major loss of capability

such as loss of mission-essential equipment or inability to maneuver. This essentially

results in a mission status of mission abort. The mission restriction category can later

be lifted if the vehicle recovers in ample time. If not, the mission resiction remains

or worsen the overall mission status to mission abort.

54



lieI

maid0

55I



The functional rule areas also have a hierarchy in themselves. A functional

assessor exists at the top of each rule base to cache knowledge about the functional

area. This then passes the functionaO area information to the main fact base which

causes the executive decision rules to be fired. (The distinction between main fact base

and functional area fact base is merely conceptual as the CLIPS inference engine does

not perform this discrimination.) A schematic of this is shown in Figure 5-4.

B. SEQUENCE OF CONTROL

The sequence of control in a rule-based system often contains a relatively high

degree of non-determinism because of its declarative nature. While there are certain

tasks which must be accomplished in procedural order, as mentioned before the

Executor is a system which reasons about situations which are normally beyond a

closed-loop control system. The CLIPS inference engine does a depth-first search of

a fact-node hierarchy, but the actual implementation hierarchy traversal is not quite as

clear.

Input mission postures are first uploaded from the Mission Planner offboard the

vehicle. As at the time of this writing not all AUV H software modules are

implemented, the current version of the Executor assumes that a simple data file

structur exists as the interface between the Mission Planner and the Executor. The

input postures read from the file are given to a Mission Interpreter which places a

posture into the proper object format and designates the high-level classification of the

posture configuration as a transit or specialized mission. As the lower avl
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configuration of the posture (depth-level turn, ascent, dive) is unknown at that time, a

comparison is made from waypoint to waypoint and the lower level action instantiated.

Not only a large influence for its own functional area, the Equipment Status area

(or interchangeably Subsystem Monitoring Area) exerts a notable influence in other

areas. Separate rules exist for each equipment area (sonar, control system, navigation

instrument, environmental sensor and special mission equipment) and the respective

power source. A continuous monitoring rule polls each equipment area for equipments

which are out of out of normal operating limits. These limits are normally parameters

of sustenance such as potential in volts or power in watts. If a mission essential

equipment fails, it causes a failure in both the Equipment Status area and in the area

with which it is associated. For example, loss of the diving-plane controls causes a

maneuvering loss and a mission essential equipment loss. If an auxiliary power source

exists for an equipment, it can be used in the event that the normal source fails.

Similarly, equipment with redundancy has the capability to have its functions shifted

to the alternate should it fail.

An Equipment Status Assessor awaits the results of equipment polling. If an

equipment fails, then the equipment (previously classified as mission essential or not

mission essential) will cause its equipment classification rule to fire and the Status

Assessor will tabulate the results. If a mission-essential equipment or a sufficient

quantity of non-mission-essential equipment fails, the equipment status area will suffer

a major failure.
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The instantiation of the lower level action attrbute of the actually

takes place within the Navigation rules upon the occasion of waypoint arrivaL Another

rule which plays a large part in the navigational aspect of high level control is the

assessment of progress along the mission track. The rule does a simple comparison of

overall distance along the track with current location. It then orders a replan of the

current track if the culrnt speed and progress made are not compatible with reaching

the goal area on time. A very simple energy-consideration function checks whether

there is sufficient propulsive power to get to the goal.

Other navigation rules cover specially-monitored depths: both yellow depths and

red depths. If the depth sonar indicates that the AUV has encountered a yellow depth

area, AUV calls the Navigator for a check of the required depth in that area. If the

observed depth does not match the required depth, guidance is ordered to reverse course

and the replanner is called. If a red-depth violation is indicated, guidance is called to

reverse course.

Maneuvering rules cover several areas. First and foremost are the obstacle

avoidance rules. The highest priority rules cover emergency situations such as detection

of an obstacle close aboard. The various orientations of the obstacle relative to the

AUV's heading will prompt a right or left turn, an ascent or a full stop (drive motors

stopped) or a combination of these. These are heuristic turning rules which proposed

by Floyd which can produce an effective gross avoidance for the AUV so that the

RePlanner can then be invoked for further path refinement (Floyd, 1991). Floyd's table

upon which the Executor rules are based is reproduced in Table 5-1. This is essentially
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TABLE 3-1. AUV OBSTACLE AVOIDANCE MANEUVERS
(Floyd 1991) I

Obstacle Alert
Flag Tur Depth Change

Fwd,right.leftbotorn

0xx0

OXXI ascend

1101 left ascend

1100 left

1011 right ascend

1010 right

111x stop (ascend)

0=No Obstacle 1= Obstade X=0orl
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an interim measure which will be replaced by a more detailed avoidance procedure in

the forthcoming Obstacle Avoidance Decision Maker module.

Detection of an obstacle at the range of the sonar's limits is another function

covered by maneuvering rules of the Mission Executor. Because of the AUV sonar's

relatively limited distance, avoidance action must be taken early. The obstacle is

initially checked for its potential to hazard the AUV. This is dependent on the

obstacle's bearing drift and its relative bearing. This is recorded and a collective

obstacle heuristic is instantiated to determine whether a proportional amount of

obstacles will block the AUV to the left or right. A gross avoidance maneuver is then

commanded to bring AUV away from the obstacle and allow the RePlanner to plan the

new avoidance path with appropriate mapping waypoints.

The procedures for an update to an obstacle are essentially the same. If the

obstacle is still a hazard, then further avoidance and replanning are necessary. There

is a danger that this will result in a significant deviation from the path and that this will

result in a mission abort. This is accounted for in the functional area assessment rule.

If an obstacle is no longer a danger, then its collision danger is recorded as such and

thus it is not considered in the collective obstacle assessment.

Other rules in the maneuvering functional area cover special depth-changing

evolutions such as diving, ascents, and surfacing. The control systems have an

inherently large influence on these special maneuvers. If a control system fails during

one of these situation, that results in an automatically commanded maneuver to

guidance to correct the attitude and level the vessel at a safe depth or change the speed
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at which the maneuver is proceeding. An improper obstacle clearance can also

precipitate changing one of these special evolutions.

The Environment rules have a similar arrangement. An Envirnmental Assessor

tabulates the number of sensors which have performance readings which are out of

limits. If it is an essential equipment such as the pressure transducer, the loss will

cause a functioal area loss. If it is a non-mission essential equipment, the loss will

only cause a minor degradation to the environment functional area.

While basic AUV maneuvering control and navigation will be the primary focus

for some time, incorporation of specialized missions will eventually become important

Specialized Mission rules have a different influence than the previous functional areas.

Most of these rules do not take effect until the transition to a special mission

configution at the conclusion of the transit. The exception to this is a special mission

ova equipment failure. A functional mission area failure occurs if the special mission

equipment fails. Future versions will most likely have an alternative to undertake a

secondary mission if the primary mission cannot be fulfilled. The mission area rules,

although not implemented in the current version , will probably be based loosely on

MacPherson's description of AUV missions in template form (MacPherson, 1988, pp.

59-75).

As mentioned previously, the functional area assessors report to the overall

mission assessor. This is located in a block of rules known as the Mission Executive,

which constitutes the highest level of reasoning in the Executor. The overall mission

assessor is insulated from details of the reports by the functional a, supervisors. It
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only remains for the overall assessor to tabulate the results. f complete failure in any

area other than the environment functional area occurs, a mission abort results. Less

than a complete failure in a functional area may cause a degradation to continue wih

restrictions. A mission degradation results in a phenomenon known as statu lock. A

mission status of mission abort results in the two other status rules being removed.

Thus, even a seeming recovery cannot override a mission abort. A degradation to

contnue with restrctions can improve to coninue unrestncted if recovery occurs in the

mandated time frame.

Mission abort causes the vehicle path to be replanned for a pre-planned

rendezvous point. It may be the origin of the mission or an intermediate point which

facilitates recovery by the launching platform. Continue with restrictions allows the

vehicle to try to recover from its maneuvering, navigation, or equipment restriction. In

the future, it may also allow for altering of the mission.

Certain high-level behaviors are modeled using the Artificial Neural Paradigm

suggested by Giarratano (Giarratano 1991, pp. 228-229). This application of the

salience of a rule is useful in differentiating between a high-level, less frequent action

and a lower-level frequently performed action. The philosophy for using salience in

this manner is that a situation (pattern match) which may cause a mission-abort or

mission-restriction usually requires immediate or timely reaction and certainly takes

precedence over a routine action such as a normal turn or depth-change in a normal

deep-water environment. The emergency-action rule must be fired before other

semantically lower-priority rules on the agenda. This (however loosely) heuristically
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models a submarine commander's "situational awareness" in an emergency. It might

also be lwied. to a focus of attention approach, such as that modeled by Blidberg and

his associates at the Marine Systems Fngineering Laboratory (Blidberg 1990, pp. 40-

41). Figure illustra an example of this.

Salinmce is also used in some background functions such as the sequencing of the

mission timer and the continuous loop which queries the slots of the system monism.

Still, it is used sparingly. SKIPPER still retains a strong declarative nature.

The Mission Executor must send not only reference postum to the Guidance

module, but commands as well. Many of the commands must initiate time-constrained

lower-level actions while the assessment of a particular functional area status is in

progress. The commands must be a series of well-understood actions which will place

the vehicle in a safe configuration when a casualty occurs. The table of these

commands is shown in Table 5-2.

C. TRUl MAINTENANCE AND THE ROLE OF UNCERTAINTY

L Maata a a CAwusmnt Knowledge Dae

As important as sensing data and scheduling actions based on it is the

mainteance of consissency in the knowledge bte. In a rule-based system this becomes

acusely imporant when the generation of a new action dough a control fact is based

n mn other event If de events which would cause that action ar no longer valid,

then it may be the cas that the generated control fact is no longer valid. In such a case

it would be necessary to go and remove the fact. This can involve complex rules. It
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TABLE 5-2. Executor Commands to Guidance

Badec Manamae Orde Object of Order

TURN turn-left rudder

TURN turn-right rudder

DEPTH-OIANGE ascend-X(X pianles

DEPTH-CHANGE dive-XX planies

DEPTH-CHANGE surface planles

SPEED-CHANGE icrease-Speed drive-motors

SPEED-CHANGE Decrease-Speed drive-motors

SPEED-CHANGE STOP drive-motors

SPEED-CHANGE HOVER hover-thrusters

I XX= depth Winiches or an indicated safe depth variable
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can also be achieved through the use of the CLIPS logical construct discussed

previously in Chapter I. One can withdraw a fact which is no longer consistent and

is no longer uppord (NASA, 1991).

Nonetheless, there are occasions when the logical construct is not as useful. These

situations usually require some sort of search. Certain high level decisions may require

knowledge of previous decisions. This is particularly true for the high level mission

decisions. A previous instantiation of abort mission cannot allow for imprvmnt to

a better status as the abort mission should only take place when all relevant options to

continue the mission have been explored and found insurmountable. The status lock

feature helps to maintain the high-level configuration while still allowing for the

necessary actions of avoiding obstacles and performing routine navigation enroute to

the mission origin or designated rendezvous. Overall mission status becomes "frozen."

2. Uncertainty

Uncertainty plays a significant role in a system such as the Mission

Executor. In fact the primary reason for using a forward-chaining rule-based tool such

as CLIPS is that there is somei knowledge but a great deal of uncertainty about the

external enviromnent. What is known about the environment can best be classified in

heuristics. A specific area of uncertainty that the Mission Executor must reason about

is the presence of obstacles. Report of an obstacle at short range automatically

generates a command from the executor (emergency situation) but report of an obstacle

at the limit of the sonar is a different matter. The obstacle is assigned a confidence

factor which comes frmn the Sonar Processing Suite. Obstacles of high or medium
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confidence cause the path to be replanned. The rationale is that the Oaher away an

obstacle is detected, the less radical a turn is necessary. This often results in less

deviation from the original track, saving both mission time and energy consumption.

D. MISSION DOCUMENTATION AND OBJECT PERSISTENCE

L The Need for High Levd Mibic. Documentation

There is a vital need for documentation of AUV missions. All of the AUV

projects now in development at various facilities around the country have come to rely

on some data recorded onboard the AUV. This compilation of data is valuable for

several reasons:

* it can be analyzed by human AUV researchers to update and refine the AUV
control systems (both hardware and software)

" it can provide an idea of what works with rule-based systems and where failure
in reasoning occurs.

" it can be used as a persistent base of knowledge for "training" AUV's in situation
assessment (this was also a conclusion of Westneat (Westneat 1990, pp. 27-33)).

Documentation already exists within the NPS AUV II Baseline system in the

form of the Environmental Database which contains some navigational data and data

about obstacles which might be encountered. A mission log is maintained by the

Navigator module in much the same way that a mission log is kept by the navigator of

a maritime vessel. However, in order to adequately study high-level control, a mission

log must also be kept of high-level decisions. It can be regarded as a form of captain's

log which records the state of the mission at the highest level and justifications for
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decisions made. At a standard time intmrval or whenever the overall mission decision

changes, an entry is made to the log. This is accomplished by saving objects and facts

to the log file.

2. Object and Fact Persistence in the Executor

Object persistence in a database refers to longevity, its ability to exceed the

life of the executing application prgm. A knowledg base no longer exists at the

conclusion of an execution. To save its knowledge, the information must be loaded to

a file. Objects art saved via the save-instances command. Facts can also be saved by

the save command (NASA 1991, pp. 169, 188).
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VL PROTOTYPE IMPLEMENTATION AND SIMULATION

This chapter describes the actual prototype implementation. Test results

are discus ed at the conclusion of the chapter.

A. CONTROL CONSTRUCTS AND OBJECT IMPLEMENTATIONS

The Mission Executor implementation is built wound the overall mission stat

existing in one of thre frms: Continueunrestricted, Continue-with.estrictiom, or

Abort..Mission. Continue_uirestricted is the initial default state outlined in Chapter

five. This state only exists when no functional area is critical or experiencing failure.

Most of the rules in the Executor are based on missions which cannot remain in the

ideal state due to a casualty or discrepancy in the mission, vehicle, or environmental

wodds.

The vehicle reasoning system is implemented upon the download of the mission

plan. This triggers the rule Mission-Tuner, which continually binds the mission time

to the current central processing unit (cpu) time. A timer flag is continually asserted

in this rule and retracted in the timer manager rule. The timer manager continually

asserts facts which trigger other polling rules. While the detailed implementatio of this

is available in Appendix A, the main algorithm is shown below:

fed (d0.cmmtio);
N vel cs ams a opmamn. in

%Wel m md-d4fHe
Md (misdan-t);
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make pum...object (delimited amio tallne);
Wd IN*l
ta veide-sor, mion, ewonnL manvaerin.

mda . Ud~U~.
wa t &md~l
while n" trminat co"Wmio

- (comp&We misawon, Wbor. to readw abon for dft==i reco.ery)
m im-eft '- ( r cpu = - mss Man time);
if the miaLsso wm - time of som event the

hatwatedte event)
if the missamLme - the appoiat docmenttio tim inteval the

document the mision;
Inow itil dvlp ech-seEx mutor atly onmen ssd navgwion

ruest to base dnY ed am to dosd loop nav an u y ow op
P16Pe chlien fteional aea naeviosw);
o hpTM of anTy OR.gs;i
PYMONa recovery or abosrt configuraios

end wbil;

Initial development of the Executor actually focussed on the internal world.

Coincidentally, it somewhat resembles the model used by Giarratano for his small

inrelligent database outlined in the CLIPS Objects Manual (Giarratano, 199 la, pp. 150-

161). Vehicle internal State is modeled in the module aensor~dp in which all onboard

equipments are represented as objects. The main class which defines an equipment

object is SYSTEM-vIONITOR. Si nce there are no actual instances of this object,

SYSTEMvLMONITOR is an abstract class. From it are derived the various equipments.

The structure of the class inheritance hierarchy is discussed in Chapter V. The

SYSTEWMONITOR class takes the form:
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(defclus SYSTEMMONffOR (is- USER)
(slot type.Ofeading)
(dlot feeding)
(slot sms (deadt nonal)))
(dot Rnm..h #= (I,,iai-o nly))
(slo tediloh (inidalize-only))

(101grdlneJalg (Inldalize-Only))
(slot pgudlinelow (iniialize-only))
(sot redlineow (nitialize-oy)))

The abstract class SYSTEM.MON1TOR shown above is composed of slots which

describe the most general form of equipment sensor onboard. This is easily

configurable for various subclasses. The slot typeof-reading is common across all

subclasses, as are the reading (the current reading recorded and propagated by the

analog-to-digital converter), and the status. The slot Redundant-Equipment is

elaborated in the instance declarations. It either establishes an equipment as redundant

with a similar or backup equipment, or it takes on the value NONE. Most equipment

has a redline reading (either high or low) indicating that the failure point or equipment

shutdown limit has been exceeded. The guardline slots exist to provide the equipment

to degrade more gracefully, perhaps initiating the turn-key operation to energize the

redundant equipment or power source. Naturally, not all equipment or power sources

have both high and low limits. The slots which are not applicable can be set to NONE

in the subclass definition where the message-handlers which depend on the various slots

are elaborated.

The various subclasses of SYSTEM-MONITOR have their own class definitions

and respective message-handlers which operate on instances of those classes. Most of

the message-handlers in this module are of the daemon variety. These message
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handlers are activated when a basic action such as insertion of a new value in an object

slot, deletion of a slot value, or reading of a slot value is performed (NASA 1991, pp.

86-87). In this case reading of a slot value is done by a polling rule, monitor-health-

continuously. If the value read exceeds a guardline value, then it often places the

system being monitored in the condition of cridcal. If the sensor redline value is

exceeded, the equipment is assumed to have failed. In the case of a vehicle control

system such as the rudder or diving planes, there is also a message-handler which

checks the response of the system. This often means positional response. If, for

example, the autopilot generates a command to turn left and the rudder moves in the

wrong direction, then the system is assumed to have become critical. An example of

the CONTROL-SYSTEM class and two message-handlers follows:

(defclu CXNTROL-.SYSTEM (is-a SYSTEM-MONITOR)
(sdot type..of-reading (default potentaian-.vohts))
(slo ceafful-lyp)
(5101t response (default nannal))
(musa4ge-hadler get-reading
(musse-bandler get-response)

(defmessage-hlu r CONTROL-.SYSTEM get-reading after 0
(bind ?caoo (instance-arne-to-symbol (insanc-name ?selo))
(if (or (and (> ?seltrading ?sefffdl~xinejiig)

(< seltreading ?.eltrdlrnejiish)
(ad (< ?UelfrAsding ?%elffguarfflinejow)

(>?uelfreading ?selfredinejow))) then
(assert (RquipmuaL-Citical ControL-Systemn ?control))

se
(if (or (> ?selfreadipg ?self3edlmejigh)

(< ?uefeading ?selftredline-low)) then
(anunr (EquimnhLFhiure ControLSystemn 7ontrol)

(mond ?uelf put-safts INOPERATIVE)))
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(ddeme e-bml CONTROL-SYSTEM g8eireqo afta 0
(Wf (neq ?elftlrpoom nal) then
(ent (EquipeLiz~ical CaoLsyszcm ?selO)))

Using low salience, these message-handlers are polled by a rule which uses an

object query do-for-l-instances for each subclass of SYSTEMMONITOR interface

with rules which determine if a situation is applicable to the failure or critical situation.

Low level rules which determine the siwatioi often have the most complex heuristics

in the Executor. However, the equipment status rules are uncomplicated, as evidenced

by the following:

(defrule ControlSyumnPailue
(quipmewYailure ConuolSytem ?control)

(if (eq ?cosaol Hov-Trusters) then
(aam _qu mzmMison-Esewa no))

else
(ur a (EquipmenM iseon.Es, yes)))

(men (Equim=LSW-,Am )))

This simply says that any failure of a control system, unless the control system

is the hover-thrusters, should be considered mission-essential and that requires impact

assessment of the equipment functional area. The assertion of the Equipment-

MissionEssential fact and EquipmentStatus-Assess control fact will trigger an

equipment status assessment. If the equipment failure is a failure of the hover thrusters,

it will simply be noted.

Objects are not only used to model equipments, but also decisions. Decisions are

maintained for purposes of later retrieval in reconstructing the mission and in

conducting any possible machine learning for the AUV. The current decision is kept
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in an instance called current. Whenever a new decision has been made, it is passed to

the function decision-change which copies the old decision to an object and in turn

replaces all the characteristic slots of the current decision. Maintaining the decision is

useful not only for mission documentation, but also in resolving conflicts between

states. The decision objects and function constructs take the following form:

(ddefAdon dsciuion-cbi g (?detype ?terju ?dhJevel ?daczamo)
a"~ ?==n (PUYM*))
(mnke-humce ?name of DECISION)
(copy4diw c ?nne of DECISION)
(iad (ciurezj pt-type ?etjype)
(md [cum) put- ?due)
(sodu (acrent puLaction ?dbeacdon)
(mid [cumn) put-decisimatime ?*missio_&ine*))

(deffuncica cop-old-instme (?insance)
(send (symbol-o-itance-nmme ?insumce) put-type

(send [cun) g#e-t pe))
(uead (symbold-o-instanoe-name ?instance) put-level

(seod (curet) g-leve))
(mead (synmbol-witme-name ?honune) put-action

(sen [cur ) gS-cndo))
(and (symbl--insumce-nae ?imtamce) put-deciszon-dme

(sod [cunt) gt-decis'on_ )))

(delms DECISION (is-a USER)
(slot type)
(slot rule)
(slot level)

(slot ducon-fim))

Mission documentation is is actually maintained by a rule which uses the save-

instances and save-facts commands to save the mission-state at that point. This is done

at a specified time interval, usually every twenty seconds. Facts and instances normally
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cannot be saved together in the same Mie using save-facts and save-instances, so that

there is both an instances log and a facts log.

(ddhbDocmmsad
?domt <- (doommw Vmiso)

(if (> ?*'uissOD..tln* ?*TimeJWEvaIE) dMe
(vetom Mimisc. Jos

(bind ?*r=Jhvd* (4. ?*r=hiewvm 20.0)))
(aWol ?docuu)

Simulation events are also modeled as objects. An event is made up of its

number, its time of instantiation, the event trigger (a fact assertion or instance message

sent to a handler), and a description of the event for output The rule trigger is actually

a literal string kept in the eventjction slot of the object EVENT-.SCHEDULF. When

the event is activated, the CLIPS eval function is used to instantiate the fact or object

message. The global variable ?*currtntevent* updates the focus to the next current

event. The event is actually instantiated by activating all the events whose event times

have passed and have not yet been activated. Thbe output lines shown in Appendix A

have been omitted here for clarity in understaniding the rulemag-handler interction:

(ded= EVE~T..SCHWULE (184 USMR
(dot em~ju)
(dot emjhns)
("o svmLX )
WKo dwadWu

(mu~iw - W ee)

(I umdler EV34TJOIEMULE aszm-mm pimmy 0
(wd ?uaudm

(bied stmv..pvm* (+ ?cuumLvem 1)))
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71,.

-dch (sMOMMc -5"0
?evgm <- (sculdake.evau nLevem)

(do-for-huom ((?cvem EVENT-SXHEDULE))
(aid (< ?0eMvCzevhIdrn ?"' uziims')

(eq ?sV4UmewmjAO ?*culILveM*))
(Owd ?eVMI =esacmf0)
(IMM ?C.wm))

B. LAYERING OF RULES

As described in the previous chapter, rules in SKIPPER ane layered according to

level of measoning. The lowest-level rules actually carry out the corrective action by

ordering Guidance to turn left or ascend-to-safe-depth or ascend-24 (signifying ascend

ten inches). This is a significant break from a human paradigm. In a naval vessel

wheom maneuvering control is conducted by humans, no human controller is assumed

to be faultlessly Competent. The commanding officer frequently cross-checks verbal

reports and orders to ensure that his instructions have been carried out. Thfis is of

particular consequence in a special maneuvering situation. In SKIPPER, the lower level

rules are assumed to be competent operators or controllers. For example, the

maneuvering rule abnormal-dive is given the responibility to order Guidance to

decrease the speed and ascend to the designated safe depth, bringing the vessel to a safe

configrto before it propagates this situation to the intermediate level assessment

rule:

(or (B" iuinur.du COOMLSYSOM FPu=..Cwmuk)
(.bmoch.e ?d=uu=&*mq ?clswu unn)
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(CA-0WUC&~mmndDacreeSp Dutve-Mohn)
(Ca@-Ouduce-C mnuxl Ascend-?", af.devW Plms)
(ISM (mOmMvl&g*lity M4WjoRCkriWcn)

The intermediate level rules appear to be ca-.didates for conflict with lower level

rules. Because the overall mission status is dependent on rapid propagation of changes

from the assessment rules, the assessment rules are given a higher salience value. Some

experiments with the artificial neural system paradigm demonstunted that dynamic

salience is not always effective. In short, the focus of consistently inreasing salience

in a particular ar based on past inputs can lead to a delay in other functional areas.

This can be critical if the other functional area is about to fail although it had no

previous record of doing so. Assigning a higher salience value to the assessment rules

gives them adequate priority. The Maneuvering Status Assessment rule which handles

an equipment failure and is linked to the low level rule above is an illustration of this:

(dru~e MuuuvaingSWus..Anuum.LqipnlweNF
(decm, (dimce ?*mnerjaflemc*))
(Iq, pum alu, conCmLSymn ftmcn neq ?conW Hover-iliu))

(Aa Mmw sum teudy ))
F * aNOuC"MenLailm))

(nowt (JIm~pwJrhqLftu~ newreyjamicod))

Its sibling rule, which evaluaies other types of maneuvering stats problems,

tabulats the number of dirpances. A certain number of dscpani signals that
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the navigational track is too ambitious, requiring an unacceptable number of obstacle

avoidance maneuvers. Te discrepancies are bound to the global variable

?*maneuverability_facto r* which triggers the Maneuvering.StatusAssessment rule and

eventually causes a mission abort.

The overall minion assessor examines the curent status of all functional areas

and makes a de-temination on the state of the vehicle mission. At that point, the overall

mission status is changed, if necessary, and the results propagated down to the

respective mission abort or mission restricted rules. Because of the length of this rule

and its respective function, they are displayed in Figure 6-1.

All of the functional areas have a similar structure. Maneuvering has the added

feature of low level assessment rules which examine the obstacle object base to see if

the indicated obstacles pose a collision danger. This added assessment requires

examination of several object slots and some tabulations, actions which lead to

increased overhead. This overhead is clearly observed in the simulation runs described

kglow.

C. USE OF FUZZY LOGIC AND TRUTH MAINTENANCE

Truth maintenance is an integral part of the mission executor, mostly in the

highest levels. The logical construct described previously in chapter three is the CPS

environment-installed method of maintaining the integrity of the state. The vehicle's

initial state (hence ideal state) rests upon a foundation of all functional aras being

operational. This does not mean that all functional areas are devoid of any
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?wmval -c- (Om.~mim - ?am)
?eqdap <- .1 - ~L. ?Oqipm=mtAgWu)

~LS~m ?muuuWrjW)

?dmu &GpWdw)

(if (eq ?e1u*mKumu .Mbm) the
(bad ?*FWd~mmjLhm'~ (6 ?4%udmmw -khilm 1))

(bind FuacdaoaLa..-aic@P (i.?*FbIcdo.I..ai.czkcaI

(if (eq ?omvermli5N ueva*e-yjwkod) then
(bind PIFacdmjuLhuajilws (+?FtuciamL~hwe

1))

(if (eq ?mNmwsmvMr...u o ed hm
(biod ,4-ruomI e- ulcd*

(* ?dcamdwesma~d 1))))
(if (eq ?vjmu oK...e-luuc) thm

1))

(if (eq ?nsvjmu ~ cudcIthm
(bmdFucd m ra~d

(if (eq ?mvbummms --ard e mn
#gond ?*mdm- wt

(..?caimusbuu )
sf(eq ?envemmjnm -, cLdvhelama

0"in idmLMLISw

(.?OFchdmjmiheu 1))))

CroW4%cdmdahuwm 7b~.mWl)

Film 6-1L OvatE Mission Asumma Ride



complications, just that the copicdons will not cause the vehicle to become criticaL

The essence of this ideal sat is embodied in the following rule:

-as C~M - )~~mmAmS-W =Md)

(o &iAbnomIm fadbl))

Any failure of a particular functional area will cause the mission status to be

retacu However, the functional area which caused the change in overall mission

status will cause the overall mission status to change. Thus, just as the overall mission

status of Continueunesicted is being retracted, a new mission state is being asserted.

Ther is no "stateless" gap in mission status.

A functional area failure causes a mission abort, resulting in vehicle recovery or

an abort transit to the designated rendezvous. The abort status is one that should

remain in effect until the vehicle is recovered. However, in the interval between the

status change and the actual vehicle recovery, thee is a possibility that a functional area

becoming critical could later attempt to cause a status of Continue..withRestrictions.

Then is also the possiblity that the funcional area recovery rules could cam a new

stase of CQntinue-unrestriced. To counter any possibility that this could happen, a nuth

mam feate of status lock is c ted. This causes the mission assessor

rule to be excised or removed. Thus, no mission state change can occur. This rule is

depicted below:
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-Okul AWMiso

(OvA mimlmi -sW Abarg..ision)
?dwrg <- (prqmgus-mI g, down)
?Pdm <- (waypoift ?o)

(d~mpOvaslUfton Aba~nio LoYw
Iock.Ams..mdjeplui..oMwjojbanjmdezvozs)

(ufndjgll OveraILAImuinA M)

(do-forrnowce ((?tonual COOLSYSTEM)
(mid (eq ?cmootma 040EATI YB

(neq ?cao Hover-Thuam))
(prp (CjIidfAX=-CaDMIW muVLO-MNu~d -

(CnU3u~dw4Cb macnd..fte pkmu)
Qvim af crlf *>>>> Sbntftg Down for Dyunmc Rawvevy acc rff

,>> Tmpmder wiD fueda for 2 hours <c<<e crlf)
061))

(Aban-Roft))

Fuzzy logic is used in obstacle avoidance rules in the confidence factor1

assignment. If the confidence factor is high to medium and the obstacle is within the

180 degree arc about the bow of the AUV, then the obstacle is considered to be a

collision danger. This confudence factor is checked whenever an obstacle alert flag is

sent, be it an update or a new obstacle.

(n Amq-udler OBSTAC.E obawloehne primaY 0
(if (md (eq ?uW~confdme.fcw hig)

(eq ?u9 - nlme~cc medium))
(or (mad (>a ?ulf~bearng 270A0) (cMeftn 359.))

(mid (-C- ?f.tbeuhi 90.0) (~m?aelf*.bevf 0.)))) in-Aw ?WWl potcdoiLademW YES)
(am (uoahctive-obinacle..unma))

a
(amd ?WWl pot-caliiis-dw NO)))

D. RESULTS

Implementing the Mission Executor Code involved some testing of the rules to

determine if the overall desired terminal action could be generated. In this heuristic
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model, the intent was to determine if symbolic high-level reasoning would achieve the

desired behavior. Another benefit was to determine if the reasoning system could

recognize situations and try to approximate real-time constrained decision-making.

Navigational waypoints used in the scenarios are based on the model of the Naval

Postgraduate School pool by Magrino and Floyd show in Figure 6-2. These are the

same used in evaluating the navigational controller (Magrino, 1991). An average

mission time of two to four minutes is used for the ideal non-avoidance path

transit/mission. The scenarios described are listed in Appendix B for reference.

Propagation effects are displayed in Table 6-1. Run-times do not agree with mission-

completion times simply because mission times are based on a starting time which is

instantiated upon the full download of the mission navigational plan, often a full 2.0

seconds or more after the beginning of program execution.

Scenario one merely tested the most basic case, pre-planned mission execution

monitoring (waypoint sequencing). The Autonomous Underwater Vehicle (AUV) was

given a set of waypoints, each with its specified estimated time of arrival as a

constrainL At the third waypoint, the AUV missed its time constraint by a considerable

amount (47 seconds), enough to cause the WaypointDistanceTime_Check rule to alert

the navigation assessment rule. A time difference of 20.0 to 39.99 seconds is

considered to be minor, resulting only in a command to Guidance to increase the speed.

A time difference of 40.0 seconds or more is considered to be a major time deviation,

resulting in a command to increase speed. The Navigation Assessment rule uses the

heuristic rule that four navigation problems such as this cause a replan of the
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Figre 6.2. NPS Pool Mission Schemnatic
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TABLE 6-1 SCENARIO RESULTS

Major Scen 1
F Status recin

Chang propagation Scen 2 Scen 3 Scen 4 Scen 5
times(secs)t

Recognition 0.276 0.452 0.243 0.244 --

Assssent 0.35 6.55 0.17 0.16 0.303

Overall 0.16 0.14 0.16 0.15 0.17
Change
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navigational waypoint plan. With only one navigation problem, this resulted in no true

change in the navigation status. Nonetheless, the navigation status was assessed for any

possible effect. The only effect was the low-level command to increase speed although

the current navigation status was propagated to the overall mission assessor.

Recognition of a large navigational discrepancy in time resulted in a time of

propagation of 0.28 seconds from the Waypoint-DistanceTimeCheck rule to the

Navigation Assessment Rule. Recognition that this was not a change to status took 0.16

seconds. The overall elapsed mission time was 3 minutes 30 seconds with 18365 rules

being fired.

Scenario two tested the ability of SKIPPER to recognize an untenable obstacle

avoidance situation. Both short range obstacles and long-range obstacles were tested.

The first recognition of an obstacle close-aboard led to an ascent to safe-depth. This

also tested a rule recognizing possible shoaling or grounding of the vessel The

emergency avoidance maneuver rule began its time check of the avoidance maneuver.

An obstacle detected at long range led to assessment of the obstacle as threatening to

the AUV. The overall maneuvering status was changed to ContinuewithRestrictions.

At one point enough obstacles had accumulated to cause the collective obstacle

assessment rule to characterize the situation as involving a critical number of obstacles

(heuristic used is four separate encounters). Later the collective obstacle assessment

rule determined that the critical point had been breached by accumulation of too many

obstacles along the track (the heuristic here is that too many obstacles will cause too

many time-consuming avoidance maneuvers). The maneuvering status assessment rule
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determined that this was a functional area failure. The maneuvering functional area

failure then forced recognition that this was an abort-mission situation. From

recognition of the critical point at 50.45 seconds into the mission, it took approximately

6.55 seconds to recognize that this was an undesirable situation. The change in the

maneuvering status and subsequent overall assessment of the mission resulted in a time

of propagation of 0.14 seconds.

Scenario three involved a vehicle control system failure. After passing several

waypoints, the AUV experienced an electrical failure of the diving planes. The first

result was a failure of maneuvering status because that was the more specific rule. The

control system failure rule fired shortly after that leading to an overall mission

assessment that this was an abort situation. From the instantiation of the triggering

event until the time it was recognized as an abort situation was an interval of 0.24

seconds. Propagation of the maneuvering status or equipment status to the overall

mission assessor is difficult to absolutely determine because of the fact that both

maneuvering assessment and equipment status assessment fired. Either one could have

caused the overall mission status to change. Because of the high salience of both rules,

activation of the overall mission assessor occurred only 0.17 seconds after the

equipment status assessment rule fired.

Scenario four evaluated both some obstacle avoidance and environmental

phenomena. Only two obstacle encounters were realized, resulting in only minor

deviations to the planned navigational track. A significant environmental phenomena

was simulated by having readings in all three environmental sensors exceed allowable
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limits. This resulted in a mission abort. From the time of the triggering event until the

recognition by the mission assessor that it was an abort situation, 0.56 seods elapsed.

Scenario five tested multiple equipment failures. The AUV passed through

several waypoints missing only one time constraint. A sonar failure (forward sonar) led

to a reduction in the overall mission status to Continue-_withR ictions as the sonar

went to a critical state. A second sonar (port sonar) led to a reinforcement of that state.

Failure of the rudder finally led to the AUV surfacing and energizing its transp .

From the triggering event until the decision to abort, 0.47 seconds elapsed.

E. EVALUATION

Comparison of results reveals that propagation of status from the functional area

assessors to the overall mission status assessor will probably meet real-time constraints

in the relatively slow-moving environment of the AUV in its testing facility. The true

time dependency does appear to be in the low-level action or assessment rules.

Situation recognition depends on good heuristics. Using an artificial neural paradigm

in which assessment rules were placed on the agenda more quickly based on previous

assessment rule firings (and dynamic salience) did not appreciably increase the speed

with which propagation of the state ocured. In fact, in at least one situation the

propagation speed was slowed by 0.5 seconds.

The use of a layered situation-based reasoning system appears to be sound. By

using an intermediate level assessment rule, the desired rapid reaction can be taken at

the low-level and the assessment of functional state can proceed at the same time.
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Thus, there need not be a salience assigned to every level. This tends to diminish the

benefit of a rule-based system. While it does not appear to work well in this

implementation, a dynamic salience may be beneficial to focus on desired reactions

when the Mission Executor is interfaced with an updated version of the Guidance

system which can handle interrupt commands. Refinement of heuristics will certainly

be necessary to further optimize the rule base.
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VIL CONCLUSION AND RECOMMENDATIONS

A. SUMMARY OF RESULTS AND CONTRIBUTIONS

1. A Prototype Expert System for Mission Execution

A small prototype has been designed, implemented, and tested for several

scenarios. While not all possible scenarios could be tested, experience in testing and

debugging the Mission Executor implemented in CLIPS version 5.0 illustrates the rapid

prototyping capabilities that are available and the great utility of objects to represent the

onboard systems. Rules for newly-envisioned situations can be added with relative

ease. Thus, the prototype is easily extensible.

2. Software Architecture for Mission Execution

The hierarchical structure designed has a recognizable data flow. The

incorporadon of the stams-lock feature by using the undefride command to freeze a

mission state and prevent stat/ule collision is an effective tool for extension in other

areas. Status lock can be an effective tool for debugging other types of programs in

which a final overall state must be maintained while other final lower level actions are

executing.
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3. Determination of Guidance Interrupt Commands

An initial attempt at defining Guidance interupt commands has been

aconpphabed and will subsequently be refined with more experience in submarne

maneuvering.

4. Identification of New Data Flow in the Baseline System

The ability of the Executor t get furthe navigation updates after a

collisionavoidance maneuver which takes it from the desired path indicates a new

possible on-demand data flow from the Navigator to the Executor. Fulder, it a ;-pas

reasonable that Guance should provide some kind of confirmation that it has caried

out an interupt command.

B. FUTURE WORK

Reseach into a configurable mission executor has several areas for extension.

This mission executor implementation is relatively immature, and further experience in

small underwater vessel missions will allow for greater refinement of its rule base.

1. Mission Executor Portability

The Mission Executor has several modes in which it can reside onbourd the

GESPAC computer. As mentioned in Chapter I, a CLIPS executable module can be

created by changing various flags in the CLIPS C language source code and

recompiling the Executor application. Another possible alternative is to embed the

Executor application in a large shell program which would hold all of the modules.

While the two previous suggestions would result in a storage savings, the best solution
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for the Executor is to port the entire CIPS inteipret (with the exception of

development tools) to the onboard computer. This will allow for greater flexibility in

the form of use of the build and eal functions to construct rules as the mission is in

progress.

The build and eval functions can be very useful in coercing the AUV to

"learn" about diUlties encountered along the designated track. A collective decisions

rule can be invoked to analyze all of the decisions made thus far (prviously archived

in the decision objects).

2. Interfacing the Executor to Dependent Modules

Although interfaces to the various dependent modules are discussed to some

extent in Chapter IV, some of the interfaces will remain hypothetical until all of the

dependent modules are completed. Naturally, incorpration of the executor into the

overall system will require that a comprehensive system alteration plan be developed.

The CLIPS-to-Ada and constructs-to-c external interfaces need to be defined.

3. Porting the Executor to the AUV II Graphical Simulator

As the offboard mission planner is completed, the actual porting of CLIPS

source code to the updated AUV H simulator will take place. While this in itself

should not be tremendously difficult, methods of simulating casualties visually on the

IRIS machine need to be developed so that SKIPPER can give a more intuitive

representation of its abilities.
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4. Incorporation of Specialized Mission Rules

At present, the AUV operates in a constrained testing environment, the Naval

Posgraduate School swimming pool. Research for some time to come will focus

primarily on transit, avoidance of obstacles and other hazards, vision and sonar sensing,

and safe etumn of the vehicle. Eventually, the vehicle will be able to carry out a very

basic mission such as deploying a camera or a hydrographic instrument for a specified

period of time. Many possible AUV missions are elaborated in (MacPherson, 1988).

Rules need to be incorporated for the situations described in that research which cover

casualties, environmental degradations, and obstacles, all of which could hinder or

hazard the specialized mission.
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APPENDIX A. MISSION EXECUTOR SOURCE CODE

Progranmer N P Wilkinson
System . CLIPS 5.0
Program : AUV Mission Executor OSkipper"

; Functional Area : Main Program
Latest Revision : 21 August 91

------------------------------------------------

Description
: The AUV Mission Executor System. This module skipper.clp
: is the main program to which all of the other five modules
: are subordinate. The highest reasoning level (overall mission
: assessment) as well as utility rules for saving decisions

reside here. Event management is also controlled here. A continuous
: loop checks for termination events which shutdown the Mission
: Executor.
: This software incorporates the use of the following in the

* :"layered worlds" paradigm:
-- Use of Fuzzy Logic
-- Prioritization of important actions and state assessment
- - Truth Maintenance via CLIPS logical constuct and "status lock"

;; Global variables which pertain to main module or to all ;;

;;; parts of the program. For the most part the actual values ;;
; ; are unimportant to understanding of the program.

(defglobal ?*starttime* 0.
?*missiontime* 0
?*mission_degradation_time* 0.
?*recoverytime* 30.0
?*TimeInterval* 20.0
?*emergencysalience* 1000
?*missioncriticalpower* 30.0
?*Functionalareafailure* 0
?*Functional_areacritical* 0
?*currentevent* I
?*Goalx* 0.0
?*Goaly* 0.0
?*Goalz* 0.0
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Function show-demo-description
;;; Function which shows the user a selection of scenarios. ;;;
;;; It is by no means all-encompassing.The 55 rules which make;;;
;;; up this system can be permuted to build many scenarios ;;;

(deffunction show-demo-description ()
(printout t crlf crlf crlf crlf crlf crlf)
(printout t " Welcome to the MISSION EXECUTOR DEMO ")
(printout t crlf crlf )
(printout t "WAYPOINTS: All scenarios take place over the same set"

crlf
U of INITIAL waypoint coordinates." crlf crlf)

(printout t "EQUIPMENT: All equipment is simulated in the event
file" crlf

U Objects are created for each onboard
equipment" crlf crlf)

(printout t "SITUATIONS: All situations are also simulated in
the event" crlf

file. For instance, an obstacle detection
is " crlf

listed and this simulates the Obstacle
Avoidance" crlf

DecisionMaker passing this information
through" crlf

* the interface to the Executor . " crlf crlf)

(printout t "SCENARIO CHOICES: select number <Ret>" crlf
"1 Waypoint Hopping Only (transit)" crlf
"2 Obstacle Avoidance " crlf
"3 Vehicle Control System Failure" crlf
"4 Obstacles and Environment Problems " crlf
"5 Equipment Failures " crlf
"6 Exit the Simulator " crlf crlf crlf))

,;; Decision objects and functions of possible use in a machine
,;; learning program. The decision can be archived in an object.
; Most importantly, the decisions made in the system are output ;;
,; so that a future developer can see the propagation of changes ;;;

i;; in decisions.
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This copies the current data in the current decision to a
a storage object

(deffunction copy-old-instance (?instance)
(send (symbol-to-instance-name ?instance) put-type

(send [current] get-type ))
(send (symbol-to-instance-name ?instance) put-level

(send [current] get-level))
(send (symbol-to-instance-name ?instance) put-action

(send [current] get-action))
(send (symbol-to-instance-name ?instance) put-decisiontime

(send [current] get-decisiontime)))

(defclass DECISION (is-a USER)
(slot type
(slot rule)
(slot level)
(slot action)
(slot decisiontime))

..................;;;;;;;;;................. ...............

;;; This routine creates the decision objects and also puts out ;;;
;;: the propagation trail

(deffunction decision-change (?thetype ?therule ?thelevel
?theaction)

(bind ?name (gensym*))
(bind ?thetime (- (time) ?*starttime*))
(make-instance ?name of DECISION)
(copy-old-instance ?name)
(send (current] put-type ?thetype)
(send [current] put-rule ?therule)
(send (current] put-level ?the level)
(send [current] put-action ?theaction)
(send (current] put-decision time ?thetime)
(printout t crlf ">>>>>>>>>>>> Decision <<<<<<<<<<<< crlf

" type : " ?the type crlf
0 rule : " ?the-rule crlf
" level : " ?thelevel crlf
" action : " ?the_action crlf)

(format t " time : %6.3f%n%n" ?thetime ))
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;,;;:,.;.,,;;;;; Event Objects and Handler ;;:;;n;;;n;;;;;;;;
;; Events are modeled as objects with a number, description, :;
;;; and time. The event description and time are output as they ;;
;;; are processed for execution.

(defclass EVENT SCHEDULE (is-a USER)
(slot event-no)
(slot event time)
(slot eventaction)
(slot description)
(message-handler execute-event))

(defmessage-handler EVENTSCHEDULE execute-event primary ()
(eval ?self:eventaction)
(printout t crlf ***********************************************

crlf
" Event Number " ?self:eventno crlf

*W crlf
Description ?self:description crlf

crlf)
(format t "Time %6.3f%n" ?self:eventtime )
(printout t

crlf)
(bind ?*currentevent* (+ ?*currentevent* 1)))

Navigation waypoint posture objects

(defclass POSTURE (is-a USER)
(slot configuration)
(slot action)
(slot number)
(slot x-pos)
(slot ypos)
(slot zXpos)
(slot theta )
(slot ETA))
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;;; Functions to simulate Guidance receiving commands ;;;

; Guidance is a dummy module :;;;,,,::::::.::::::::

(deffunction Call-Guidance-Waypoint (?destination)
(assert (Guidance receive-waypoint))
(printout waypoint ?destination))

(deffunction Call-Guidance-Command (?action ?object-equipment)

(assert (Guidance receive-coamand))

(assert (Currentaction ?action ))
(assert (show board))
(printout action ?action " "?object-equipmsnt crlf))

Functions to simulate RePlanner executing Replan ;;;
;;; or Abort Plan

(deffunction Replan-Route (?action
?goalx ?goaly ?goalz)

(do-for-all-instances ((?posture POSTURE)) ;get rid of old
TRUE ; waypoints

(send ?posture delete))

(assert (waypoint 0))
(assert (vehicle operational))
(assert (currentplan "replan.dat"))
(assert (Current action replanning))
(assert (upload plan)))

(deffunction Abort-Route ()
(do-for-all-instances ((?posture POSTURE)) ;get rid of old

TRUE ; waypoints
(send ?posture delete ))

(assert (waypoint 0))
(assert (vehicle operational))
(assert (currentplan mabort.dat"))
(assert (Current-action transitingto abortjrendezvous))
(assert (upload plan)))
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;;The rules, initial facts and initial ob~ject instances which are ;4;
;;present at the start of execution

(definstances STARTING DECISIONS
(current of DECISION (type Overall)

(rule None)
(level High)
(action Pierside)
(decision tims (time)J)))

;;;After the vehicle is checked for operational status by the
;:;the movement of a control surface, it is assumed to be
::; operating under ideal conditions

(deffacts Starting Facts
(Overall mission status Continue-Unrestricted)
(configuration transit)
(Equipment Status normal)
(Maneuvering ,Status unrestricted)
(Envi ronmental Status normal)
(NavigationStatus within-tolrance)
(Spec Mission Status feasible))

;IIOpens the simulation data files which mimic the modules which
:;;will interface to the Executor. This does not include the equipment
;;;monitoring interface which is shown in seneor.clp

(defrule initialize-vehicle

(show-demo-description)
(bind ?scenario (read))
(if (and (>- ?scenario 1) (<-n ?scenario 5)) then

(bind ?scenariofile (str-cat "scenario" ?scenario .ins"))
else (if (- ?scenario 6) then (halt)

else (printout t "Improper Selection -- Please Choose 1-6" crlf
crlf)

(retract *
(assert (initial-fact))))

(load-instances ?scenariofile)
(assert (vehicle operational))
(assert (waypoint 0))
(open "Guidance.dat" waypoint "w")
(open "Couumand.dat" action "w")
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(open "obstacles.dat" obstacles "r")
(assert (currentplan "Missionplan.dat-))
(assert (upload plan))
(set-salience-evaluation every-cycle))

Starts the vehicle reasoning system
;;; Loads up the mission reference postures into objects................................................liii i,;,,,,i,,,,,i,,,, ,,,;°,;*ii liiI1 91 1i I ll li l .. .. .. .. .. ii;;;

(defrule upload
(vehicle operational)
?current <- (current-plan ?file)
(waypoint ?no)
?upload <-(upload plan)
->

(if (- ?*start time* 0.) then
(bind ?*starttime* (time)))
(open ?file plan "r")
(bind ?number ?no)
(bind ?config (read plan))
(while (neq ?config EOF)
(bind ?name (gensym*))
(make-instance ?name of POSTURE
(configuration ?config)
(action unknown)
(number ?number)
(xpos (read plan))
(ypos (read plan))
(zpos (read plan))
(theta (read plan))
(ETA (read plan)))
(bind ?confiq (read plan))
(bind ?number (+ 1 ?number)))

(close plan)
(retract ?current)
(retract ?upload)
(assert (waypoint-status mark..on top))
(assert (mission_timer running))
(assert (Current action underway)) )
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Timer Control (Program Loop)

;ntContinually Loops while the vehicle is in operation
;; Binds the mission time to the CPU clock

(def rule Mission Timer
(declare (salience -500))
?timer <- (mission_timer running)

(bind ?*mission-time* (- (time) ?*start time*))
(if (and (neq ?*'mission degradation time* 0.)

(> ?*mission time* (+ ?*mission degradation time*
?*recovery time*))) then

(assert (recoveryevaluation poor))
(bind ?*missiondegradationtime* 0.))

(retract ?timer)
(assert (timer-flag on)))

(def rule timer-manager
?timer-flag <- (timer-flag on)

(retract ?timer-flag)
(assert (mission timer running))
(assert (system monitors running))
(assert (schedule event next event))
(assert (avoidance timecheck))
(assert (document mission)))

Mission Documentation

(defrule DocumentMission
?document <- (document mission)

(if (> ?*mission_-time* ?*TimeInterval*) then
(save-instances "KissionLo. ins")
(save-facts "Mission Log. factaw)
(bind ?*Time Interval* (+ ?*Time Interval* 20.0))) ; sets

(retract ?document) ) ;time interval for gathering

; log.data
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;;;;;;;;;;;;;;;;;;;;;;;;,;;;,DIDDD,,;,,;;;;;;;;;,;;;;;;;;;;;;;;;,Event Manager/Scheduler

;;; Check EVENT LIST for events where missiontime has already ;
;; exceeded eventtime and put it on the schedule.
,::::::::::::::....................................................

(defrule eventschedule manager
(declare (salience -500))
?event <- (schedule event nextevent)

(do-for-instance ((?event EVENT SCHEDULE))
(and (< ?event:eventtime ?*mission-tie*)

(eq ?event:event-no ?*current-event*))
(send ?event execute-event))

(retract ?event))

P=====================================================================

Mission Executive

;;This constitutes the highest level of reasoning within SKIPPER
,;;Decisions made in this block of code affect the status of the ,-;
;;overall mission.
D*DDPS:ISI*SSSDDDSDDIDDSIISDISS::SISSDD:DSDIIDISIIIIISDDIIIIDDIDIIDIII

: Function Total-Functional-
Problems;;;;;;;;;:: ;;;;;;;;;;;;;

This tabulates the problems of the various functional areas.
;;;

SIDDSD:SISDDI**DSDIIISSFDSSDIDPSDSIDDDD:SFSDDDDIDIIISDIIISPISIIDIIDSIDIS

(deffunction Total-Functional-Problems (?overall)
(if (>- ?*Functionalarea failure* 1) then

(retract ?overall)
(assert (Overall missionstatus Abortmission))
(assert (propagate-change down))

(decision-change Overall Mission OverallMissionAssessor High
Abort_mission)
else

(if (and (eq ?*Functional areafailure* 0)
(> ?*Functional area_critical* 2)) then

(decision-change Overall_Mission
OverallMission Assessor High Abortmission)

(retract ?overall)
(assert (Overall_missionstatus Abortmission))
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(assert (propagate-change down))

if (and (eq ?*Functional-areajfailur.* 0)
(neq ?*Functional-area-critical* 0)) then

(retract ?overall)
(assert (Overall mission status Continue with Restrictions))
(decision-change OverallMission OverallMissionAssessor

High ContinueMission-with-restrictions)))))

~~~~ ~~Overall Mission Status ;;;;;;,,,

;;This waits on changes to the 5 rule areas Changes from ;;

;;these are indicated with the assertion of the propagate_ ,

;;change flag. Changes to functional areas are checked for
;:effect to the overall mission by the function Total-
;;functional Problems

(def rule overallMissionAssessor
?overall <- (overall m;ission status ?status)
?equip <- (Equipment_Status ?equipment-status
(ManeuveringStatus ?maneuver s3tatus
(NavigationStatus ?navs3tatus
(Environmental_-Status ?environment-status
(Spec_ Mission_-Status ?specmission status
?change <- (propagate change)

(retract ?change)
(if (eq ?equipment -status major-failure) then

(bind ?*Functional-area-failure* (+ ?*Functional-area-failure*
M)

else
(if (eq ?equipment -status equipment-critical) then

(bind ?*Functional area critical*
(+ ?*Funtional area-critical* 1))))

(if (eq ?maneuver status severely restricted) then
(bind ?*Functional area failure*

(+ ?*Fun-ctional-area-failure* 1)

else
(if (eq ?maneuver -status restricted) then

(bind ?*Functional area critical*
(+ ?*Functional~area-critical* 1)))

(if (eq ?nav -status out of -tolerance) then
(bind ?*Functional area failure*

(+ ?*Functional_area_failure* M)

else
(if (eq ?nav -status critical) then

(bind ?*Functional-area-critical*
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(+ ?*Functionalareacritical* 1))))
(if (eq ?environmentstatus major_deviation) then

(bind ?*Functionalarea failure*
(+ ?*Functionalareafailure* 1))

else
(if (eq ?environmentstatus critical deviation) then

(bind ?*Functionalareacritical*
(+ ?*Functionalareacritical* 1))))

(if (eq ?specmissionstatus infeasible) then
(bind ?*Functionalareafailure*

(+ ?*Functionalareafailure* 1)))
(Total-Functional-Problems ?overall))

...... .............. Unrestricted Mission ......................
Default Status for start of mission and when the status
is restored to normal after a recovery from mission
restrictions

(defrule Continue-Missionunrestricted
(logical (EquipmentStatus normal)

(ManeuveringStatus unrestricted)
(EnvironmentStatus normal)
(Navigation Status withintolerance)
(SpecMissionStatus feasible))

W>

(decision-change OverallMission Continue-Missionunrestricted
High Continue-mission-with-no-restrictions)

(assert (Overall_mission_status ContinueUnrestricted)))

Restricted Status Update
If the recovery evaluation is poor (as determined by

by exceeding a standard recovery time) then abort the
mission

(defrule Continue-missionrestricted-update
(Overall_mission_status ContinuewithRestrictions)
(recoveryevaluation poor)

(decision-change OverallMission Continue-missionrestricted-update
Assessment AbortMission)

(assert (Overall_mission_status Abort_Mission)))

109



UU;;;;;;;;;;; Initial Restricted Status Actions ;;;;.......
;;;; Note the missiondegradation status
I.eD,F,D,,,F,,Feeo..e.DD.I,,,,,DDeoDeoeooo,,,,,,ooIoe,,D

(defrule Continuemissionrestrictedinitial
(Overallmission_status Continue_withRestrictions)

(decision-change Overall Mission
Continuemission restrictedinitial
Assessment Note-time-of-status-change)

(bind ?*mission-degradationtime* (- (time) ?*starttime*)))

;;;;;;;;;;;;;;;; ; , Abort Mission ..........................

A mission abort causes the overall mission status to ;;

be locked. A replan must be made to reach the
abort rendezvous

;;;; Default is that AUV can return under own power after
;;; a mission abort. However, if there is a primary control
;.;; system failure such as failure of rudders or dive-planes,

;;;; the vehicle will require recovery.

(defrule Abort Mission
(declare (salience 500))

(Overall -missionstatus Abort_mission)

?change <- (propagate-change down)
?point <- (waypoint ?no)

(retract ?point)
(retract ?change)

(decision-change OverallMission AbortMission Low
lock status_andreplan route-to_abortrendezvous)

(undefrule OverallMissionAssessor) ; status lock
(do-for-instance ((?control CONTROLSYSTEM))

(and (eq ?control:status INOPERATIVE)
(neq ?control Hover-Thrusters))

(proqn (Call-Guidance-Conmand turnontransponder transponder)
(Call-Guidance-Comand ascend_surface planes)

(printout t crlf crlf ">>>>> Shutting Down for Dynamic Recovery
<<<" crlf

">>>>> Transponder will function for 2 hours
<<<" crlf)

(halt)))
(Abort-Route))
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Function Display-Status
Actually prints the status display.

(def function display-status (?waypoint ?status ?maneuvering ?navigation
?environment ?equipment ?mission

?action ?depth-configuration ?configuration

(bind ?display-time-minutes(trunc UI ?*mission tim* 60.0)))

(bind ?display-time-seconds (round (mod ?*mission-time* 60.0)))
(if ( < 7di3play-time-3econd3 10.0) then

(bind ?display-time-seconds (str-cat U0U ?display-time-seconda)))
(printout t

crlf
"ISkipper's Display I" crlf

n s i n n s n s ss s Ucrlf

TIME in minsecs "?display-time-minutes":

?display-tiMe-seconds crlf
"Overall Mission Status >>> " ?status " <<<" crlf
M ManueveringStatus :"?maneuvering crlf

"Equipment_Status ?equipment crlf
"Navigation_-Status "?navigation crlf

a Environment status a?environment crlf
"Spec -Mission -status: ?mission crlf

a---------------------------------------------------------Icrlf

a 1 evolution- " onfiquration crlf
"I depth-status :" ?depth-configuration crlf

crlf
"I Last Commnand to Guidance :a?action crlf
"I enroute-waypoint : ?waypoint crlf

------------------------------------------------------------------------- crlf
aiobstacles I" crlf

a i n if l ~crlf
"I Direction I Proximity IType i"crlf

a----------------------------------------------------------------------- -

crlf)

(do-for-all-instances ((?obstacles OBSTACLE))
(eq ?obstacle:collision danger YES)

(printout t " ?obstacle:bearing
?obstacle proximity

?obstacle:type crlf crlf))



(printout t ~ i mmmm crlf
"IEQUIPMENT DOWN I" crlf

----------------------------------------- 0 crlf)

(do-for-all-instances ((?equipment SYSTEMMONITOR))
(eq ?equipment:status INO;PERATIVE)

(printout t ">>>>>>> 0 (instance-name-to-ymbol ?equipment)
"<<<<<<<" crlf)))

Show Status Board

;;Shows the status of vehicle worlds and actions being taken ;

;;to offset deviations or discrepancies. Not as timely as
:;propagation flow of decisions, this only shows the effects ;

;;of a decision since the last low level cozunand to Guidance ;

(def rule show-status-board
(Overall mission-status ?status)
(Maneuvering Status ?maneuvering)
(Navigation_-Status ?navigation)
(EnvironmentalStatus ?environment)
(EquipmentStatus ?equipment)
(Spec.MissionStatus ?mi3sion)
(waypoint ?number)
?current <- (Current action ?action)
?show <-(show board)

(do-for-instance ((?point POSTURE))
(eq ?point:number (- ?number 1 )

(progn (bind ?depth-configuration ?point:action)
(bind ?configuration ?point:configuration)))

(display-status ?number ?status ?maneuvering ?navigation
?environment ?equipment mission ?action

?depth-configuration ?configuration)
(retract ?current)
(retract ?show))

* ., ,, ,, ,, ,,, ,, ,, End of Main Module ;; ,.,,,.,,,,,,.*,,,,,,, ,
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; Progranmier W P Wilkinson
; System : CLIPS 5.0

Program . AUV Mission Executor *SKIPPER"
; Functional Area Navigation
; Latest Revision 30 August 91

Description
DDDDFDDDIDDDFDDDDDIIDDDDDIDDDIDDDDDDDDDDIDDoIIDDDDDDDIIIDDIDIIIDDDDDDDD

This area covers the navigational situations which require a
higher level of reasoning than can normally be found in the

* Navigator Module. Covers special navigational situations such
as diving, surfacing, ascending to safe-depth, and more
mundane situations such as passing waypoints.

;;;;; Global Variable Declarations Pertaining to Navigation;
I#DDI#DDIIIII#IID*IIIDDII#IIDDDDD#SDIDIDDDDDIDDDSDDDDDIDDDDID

(defglobal ?*QtyNavProblems* = 0
?*NrNavlnstrumentsfailed* = 0
?*NrBottomObstacles* W 0
?*navigation_salience* - 100
?*safedepth* = 3
?*BottomObstacleTime* - 0.0
?*bottomobstacletimeinterval* - 10.0)

::::::::::::::::::::::::::::IDIID:ID:D:I:::::DIDDD:DDDDDDID:DDDIIDD:

Navigation Status Assessment ;;;

(defrule Navigation Assessment
(declare (salience ?*navigationsalience*))

(or (Depth_Status Shoaling)
(TimeDeviation))

?nav <- (NavigationStatus ?navstatus)
=>
(decision-change Navigation NavigationAssessment Assessment

determineNay_Status andypass_to_OverallMission_assessor)
(bind ?*QtyNavProblems* (+ ?*QtyNavProblems* 1))
(if (or (>- ?*QtyNavProblems* 4)

(> ?*NrNavlnstrumentsfailed* 2)) then
(retract ?nav)
(assert (Navigation Status outof_-tolerance))
(assert (propagate change))
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else
(if (or (-?*QtyNavProblem* 2)

(?*NrNavlnstrumsntsfailed* 2)) then
(retract ?nav)
(assert (NavigationStatus critical))
(assert (propagate c hange)))))

Separate Equipment Consideration

(def rule NavigationAssessment_Equipment
(declare (salience ?*navigation -salience*))

(Equipment_-Failure NAVXGATION_ INSTRUMENT ?instrument)
?nav <- (Navigation Status ?navstatus)

(decision-change Navigation NavigationAssessment Assessment
determineNayStatus and pass toOverallM4ission-assessor)

(bind ?*QtyNavProblems* (+ ?*QtyNavProblems* 1))
(if (or (>- ?*QtyNavProblems* 4)

(> ?*NrNavlnstrumentsfailed* 2)) then
(retract ?nav)
(assert (Navigation_-Status out-of-tolerance))
(assert (propagate change))

else
(if (or (-?*QtyNavProblems* 2)

(?*NrNavlnstrumentsfailed* 2)) then
(retract ?nav)
(assert (Navigationstatus critical))
(assert (propagate c hange)))))

.,,,;;;Although the AWV's propulsion power source is good for
* ;:approximately 2 hour mission, even long testing facility

,.,,;;;missions may cause an abort.

(def rule Energy_A ssessment
(Energy DPeviation major)
?status <-(NavigationStatus ?navstatus)

(retract ?status)
(assert (NavigationStatus out -of -tolerance))
(assert (propagate cihange)))
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Waypoint Arrival Rules

;;;; These rules are invoked whether or not the AUV is in an explicit ;
;;;; exception situation.They compare depth and determine if point ;;;
;;;; is the Goal (origin, rendezvous or abortrendezvous point).
;;;; Energy and time are checked, possibly indicators of an
;;,; implicit exception such as exceeding the estimated time of
::;; arrival (ETA)

;;; Recognizes origin or rendezvous point as appropriate

(defrule Goal Recognition
(waypoint-status mark on top)
(waypoint ?waypointno)

(do-for-instance ((?current POSTURE))
(eq ?current:number ?waypoint no)

(if (eq ?current:configuration Goal) then
(Call-Guidance-Conmuand arrived at rendezvous)

(printout t crlf crlf ">>>>>Made it to Goal<<<<<<<" crlf
" At time " ?*missiontime* crlf)

(halt)))
(assert (compare-depth)))

;;; Upon waypoint arrival, compares depth at current waypoint to next
waypoint to determine overall change

(defrule WaypointArrival-DepthComparison-GoalCheck
?compare <- (compare-depth)
?w <- (waypoint-status markontop)

(waypoint ?waypoint no)

(decision-change Navigation WaypointArrival-DepthComparison
Lowassessment determinetype_of_depthchange)

(retract ?compare)
(retract ?w)
(do-for-instance ((?current POSTURE) (?next POSTURE))

(and (eq ?current:number ?waypointno)
(eq ?next:number (+ ?current:number 1)))

(progn (if (eq?current:z_pos ?next:zpos) then (send (symbol-to-
instance-name ?current)
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put-action no-depth-change))
(if (and (> ?current:z-pos ?next:z-pos)

(neq ?next:zpos 0.0)) then
(send (symbol-to-instance-name ?current)

put-action ascent))
(if (and (> ?current:zpos ?next:zpos)

(eq ?next:zpos 0.0)) then
(send (symbol-to-instance-name ?current)
put-action surface))

(if (< ?current:Zpo3 ?next:zypos ) then
(send (symbol-to-instance-name ?current)

put-action dive))))
(Call-Guidance-Couunand mark-on-top waypoint)
(assert (delta_depth cqheck complete))
(assert (time-distance-check)))

(def rule Waypoint monitor
?point <- (waypoint. ?no)
?depth-check <- (delta-depth-check complete)
(configuration ?config)

(decision-change Navigation Waypoint monitor Lov_assessment

(bind ?nextypoint (+ ?no 1)
(retract ?point)
(do-for-instance ((?destination POSTURE )

(eq ?destination:number ?nextpoint)
(Call-Guidance-waypoint ?destination))

(retract ?depth-check)
(assert (vaypoint, ?nextpoint)))

,;Performs a «<time-distance > check if passing a vaypoint;

(def rule waypoint_-Di3tanceTimeEnergy_2Check
(waypoint ?no)
?t-check <- (time-distance-check)

(decision-change Navigation WaypointDistanceTimeCheck
Low assessment. determine-if-ned to ncrease speed)

(bind ?energydepletion (* .00013 ?*mission-time'))
(if (> ?energydepletion .70) then

(assert (Energy_ Deviation major)))
(do-for-instance ((point POSTURE))

(eq ?point:number ?no)
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(if (> (abs (_ ?*mission..time* ?point:ETA)) 40.0) then
(assert (Time Deviation))

else
(if (> (abs (- ?*a3ission time* ?point:ETA)) 20.0) then

(Call -Guidance-Cosmuand Increose-Speed Drive motors))))
(retract ?t-check))

(def rule TimeDeviation
(Time Deviation)

(Replan-Route none ?*Goalx* ?*Goaly* ?*Goalz*))

Depth Rules
;;These rules require a direct depth-check from sonar. Currently ,

:; exceptions to correct bottom following are signalled by the
;;; emrgency obstacle flag

(def rule depth_sounding_deviation short range
(or (obstacle-flag-emergency 0001l)

(obstacle-flag-emergency 0011)
(obstacle-flag-emergency 0101)
(obstacle-flag-emrgency 0111)
(obstacle-flag-emrgency 1101)
(obstacle-flag-emergency 1011))

(decision-change Navigation depth~ounding detviation Ishortrng
low supervisory avoid possibleshoaling)

(Call-Guidance-Conuand ascend-?*safedepth* planes)
(bind ?*NrlottomObstacles* (4. ?*NrsottohObstacle3* 1))
(assert (Depth-Status Violation)))

Depth Sounding deviation at the limit of sound sensors ;

(def rule depth sounding deviation-long_ range
(obstacle alert on)
(new_,obstacle on)

(decision-change Navigation depthsounding deviation longrng
low-supervisory avoid possible shoaling early)

(do-for-instance ((obstacle OBSTACLE))
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(and (eq ?obstacle:type bottom)
(eq ?obstacle:ID-num ?*obstacle-ref '))

(progn
(bind ?'NrBottomObstacles* (+ ?'NrBottou stacles* 1)
(Call-Guidance-Conmand ascend-?*safe_depth' planes)
(assert (Depth-Status Violation)))))

Aggregate of obstacles over short period of time indicates the AUV
is in a serious potential grounding situation

(def rule Detect_-Shoaling
(Depth-Status Violation)
(test (> ?*NrBotto.~bstacles* 1)
=>

(decision-change Navigation DetectShoaling Low assessment
determine-if-really_shoalingopr_just-bottom obstcl)

(if (and (> ?*Nr~ottomobstacles' 4)
(< (- ?'Mission-time' ?'BottoznCbstacleTime')

?'ottom obstacle -time-interval')) then
(assert (Depth-Violation Shoaling))
(Call-Guidance-Couand Stop Drive-motors))

(bind ?'BottomObstacleTime' ?'mission_time'))

Ila
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; Programmr W P Wilkinson
; System : CLIPS 5.0
; Program AUV Miasion Executor "SKIPPER"
; Functional Area Maneuvering Rules
; Latest Revision 30 August 91

Description

; This section of the Mission Executor contains the rules for
; situations involving obstacles, maneuvering hazards during
; a dive, ascent, or turn.

Global Variables Pertaining To Maneuvering

; ;;II I I F DD D I D D D D~ IU D D U D D I D DD U D F 5 D D U

(defglobal ?*aneuver esalience* - 100
?*obstacleref* - 0

?*obstacleclearance.time* - 30.0
?*avoidance_time* - 0.
?*maneuverabilityfactor* - 0

(defclass OBSTACLE (is-a USER)
(slot ID-num)
(slot type)
(slot bearing)
(slot proximity)
(slot brngdrift)
(slot timeobserved)
(slot confidencefactor)
(slot collisiondanger)

(message-handler obstacle-change ))

;;;; Checks to see if obstacle is in a 190-degree arc about the
,; bow of the sonar

(defmessage-handler OBSTACLE obstacle-change primary()
(if (and (or (eq ?self:confidencefactor high)

(eq ?self:confidence..factor medium))
(or (and (>- ?self:bearing 270.) (<- ?self:bearing 359.))

(and (<- ?self:bearing 90.) (>- ?self:bearing 0.)))) then

(send ?self put-collision danger YES)
(assert (collective obstacle assessment))

else

(send ?self put-collision danger NO)))
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Maneuvering Status Assessment ie

;;;This is the functional area supervisor for maneuvering.;;

(defrule Maneuvering Status Assessment
(declare (salience ?*maneuver -salience*))
?obst <- (ObstacleAvoidance restricted)
?assess <- (Maneuvering-Status-Assess)
?maneuver <- (maneuveringtatus ?status)

(decision-change Maneuvering Maneuvering Status Assessment
maneuve ring-assessment change-overall-maneuvering-status)

(bind ?'maneuverability.-factor' (4 ?'maneuverability_.factor' 1)
(if (> ?*maneuverability-factor' 2) then

(retract ?maneuver)
(retract ?obst)
(assert (ManeuveringStatus severelyrestricted))
(assert (propagate change))

else
(retract ?maneuver)
(retract ?obst)
(assert (Maneuvering tatus restricted))
(assert (propagate change)))
(retract ?assess))

(def rule Maneuvering StatusAssessment -long range
(declare (salience ?'maneuver-salience*))

?a ability <- (maneuvering bility ?ability)
?assess <- (Maneuvering-Status-Assess)
?maneuver <- (ManeuveringStatus ?status)

(decision-change Maneuvering Maneuvering tatus Assessment
maneuvering-assessment change-overall-aneuvering-status)

(bind ?'maneuverability-factor' (+ ?'maneuverability~factor' 1)
(if (or (> ?'maneuverability-factor' 2)

(eq ?ability Major Restriction)) then
(retract ?maneuver)
(assert (Maneuvering .Status severely restricted) )
(assert (propagate change))

else
(retract ?maneuver)

(assert (ManeuveringStatu3 restricted))
(assert (propagate change)))
(retract ?assess))

120



(def rule ManeuveringEquipment Failure
(Equipment-Failure ControlSystem ?control&: (neq ?control Hover-

Thrusters))

(decision-change Maneuvering ManeuveringStatus_Assessment
maneuvering-assessment change-overall-maneuvering-status)

(assert (ManeuveringStatus severely_restricted))
(assert (propagate change)))

;;;; Emergency Evasive Maneuvers for Obstacles at Close Range ;;;
;;; Based upon obstacle alert system developed by C. FLOYD ;;

(defrule emergency_maneuverevaluation

(or (obstacle-flag-emergency ?)
(new-obstacle on))

(decision-change Maneuvering emergency maneuverevaluation
assessment

assess emergency_obstacleavoidancemaneuvers
(bind ?*avoidancetime* ?*missiontime*)
(assert (assess_avoidance-maneuver)))

(defrule AssessAvoidanceManeuver
(declare (salience -500))
?assess <- (assessavoidance maneuver)
?check <- (avoidancetime check)
W>

(retract ?check)
(if (> ?*mission_time* (+ ?*avoidancetime* ?*recoverytime*))then
(retract ?assess)
(assert (maneuvering ability MajorRestriction))
(assert (Maneuvering-Status-Assess))))

(defrule emergency-evasive-maneuver-ascend
(declare (salience 1000))
(or (obstacle-flag-emergency 0001)

(obstacle-flag-emergency 0011)

(obstacle-flag-emergency 0101)

(obstacle-flag-emergency 0111))

(decision-change Maneuvering emergency-evasive-ianeuver-ascend
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Low-supervisory-level ascendto avoid obstacle )
(Call-Guidance-Comand ascend-?*saf depth* rudder
(assert (Obstacle-Avoidance restricteda))

(defrule emergency-evasive-maneuver-leftascend
(declare (salience 1000))
(obstacle-flag-emergency 1101)

(decision-change Maneuvering emorgencyevasivemaneuver-leftascend
Low-supervisory-level
turn _ leftand_ scend_to_avoidobstcl)

(Call-Guidance-Comand turn-left rudder)
(Call-Guidance-Comand ascend-10 planes)
(assert (ObstacleAvoidance restricted)))

(defrule emergency-evasive-maneuver-left
(declare (salience 1000))
(obstacle-flag-emergency 1100

(decision-change Maneuvering emergency-evasive-maneuver-left
Low-supervisory-level turn left to avoid obstacle)

(Call-Guidance-Command turn-left rudder)
(assert (ObstacleAvoidance restricted)))

(defrule emergency-evasive-maneuver-rightascend
(declare (salience 1000))
(obstacle-flag-emsrgency 1011

(decision-change Maneuvering emergency-evasive-maneuver-
rightascend

Low-supervisory-level
turnright and ascend to_avoidobstacle)

(Call-Guidance-Comand turn-right rudder)
(Call-Guidance-Command ascend planes)
(assert (ObstacleAvoidance restricted)))

(defrule emergency-evasive-maneuver-right
(declare (salience 1000))
(obstacle-flag-emergency 1010)

(decision-change Maneuvering emergency-evasive-maneuver-right
Low-level-supervisory turn rightto.avoid.obstacle)

(Call-Guidance-Comnd turn-right rudder)
(assert (Obstacle Avoidance restricted)))
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(defrule emergency-evasive-maneuver-stopascend
(declare (salience 1000))

(or (obstacle-flag-emergency 1110)

(obstacle-flag-emergency 1111))

(decision-change Maneuvering emergency-evasive-maneuver-stopascend
Low-level-supervisory Stop_forwardmovementand_ascend)

(Call-Guidance-Command Stop Drive-motors)

(Call-Guidance-Cotmand ascend planes)
(assert (ObstacleAvoidance restricted)))

;;;; Special configurations which can easily become
;;;; catastrophic if an abnormal condition exists.
;;:; Diving, ascending and surfacing require
;;;; fast reaction to counter an unstable control
;;;; system or an obstacle close-aboard
DoCCDCIICIDoDIICDIDCIDDIIDICCIDCIIIDCIICCDIDDIIDIDDDIDDDIDDIIDDCIDDD

(defrule abnormalsurface
(configuration ?config)
(action surface)
(or (EquipmentFailure Control System PlaneControls)

(obstacle_clearance ?clearance&:(neq ?clearance normal)))

W>

(decision-change Maneuvering abnormal surface
Low-supervisory-level
Increase speedtosurface)

(Call-Guidance-Command Increase-Speed Drive-motors)
(assert (maneuvering ability MajorRestriction))
(assert (Assess-Manueuvering-Status)))

(defrule abnormal ascent
(configuration ?config)
(action surface)
(or (Equipment_ Failure ControlSystem PlaneControls)

(obstacleclearance ?clearance&:(neq ?clearance normal)))

(decision-change Maneuvering abnormalascent Low supervisory level
increasespeed of_ascent)

(Call-Guidance-Coamand Increase-Speed Drive-motors)
(assert (maneuveringability MajorRestriction))
(assert (Maneuvering-Status-Assess)))
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(def rule abnormaldive
(configuration ?config)
(action dive)
(or (Equipment-Failure ControlSystem Plane-Controls)

(obstacleclearance ?clearance&:(neq ?clearance normal)))

(decision-change Maneuvering abnormaldive Lowsupervisory level
decrease_speed_of_dive_ascend to_safe_depth)

(Call-Guidance-Comand Decrease-Speed Drive-motors)
(Call-Guidance-Command ascend-?*safedepth* Planes)
(assert (maneuveringability MajorRestriction))
(assert (Maneuvering-Status-Assess)))

SensorLimit Obstacle Detection

;;; These Rules interface with the Obstacle Avoidance
DecisionMaker. Most of these conditions can only be

;;; simulated until the Obstacle Avoidance DecisionMaker
;:; is completed

;;; Detection of a "new" obstacle ;:;:::::::,:::::,::::::::::,:::::
;;; The obstacle is assigned an ID reference number for tracking ;;
;;: As the OBSTACLE class message-handler indicates above,
;;; we are only interested in obstacles in a 180-degree arc
;;; about the bow
;;; the bow.

(defrule ObstacleDetection NormalLimits
?obstflag <- (obstacle alert on)
?new one <- (newobstacle on)
W>

(decision-change Maneuvering Obstacle detectionNormalLimits
Low-assessment classifynormalrange_obstacle-as_new)

(bind ?*obstacle ref* (+ ?*obstacleref* ))
(make-instance (gensym*) of OBSTACLE

(IDnum (read obstacles))
(bearing (read obstacles))
(type (read obstacles))
(proximity (read obstacles))
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(brngdrift (read obstacles))
(timeobserved (read obstacles))
(confidencefactor (read obstacles))
(collisiondanger unknown))

(do-for-instance ((?obstacle OBSTACLE))
(eq ?obstacle:IDnum ?*obstacleref*)

(send ?obstacle obstacle-change))
(retract ?newone))

Update to previously detected obstacle

(defrule ObstacleUpdate
?obstflag <- (obstaclealert on)
?update <- (obstacle_update on)

(decision-change Maneuvering ObstacleUpdate Lowassessment
updateobstacle_status:rangebearing, collision-danger)

(bind ?currentobstacle (read obstacles))
(do-for-instance ((?obstacle OBSTACLE))

(eq ?obstacle:IDnum ?currentobstacle)
(progn (send ?obstacle put-bearing (read obstacles))

(send ?obstacle put-type (read obstacles))
(send ?obstacle put-proximity (read obstacles))
(send ?obstacle put-brngdrift (read obstacles))
(send ?obstacle put-timeobserved (read obstacles))
(send ?obstacle put-confidencefactor (read obstacles))
(send ?obstacle put-collision danger unknown)
(send ?obstacle obstacle-change)))

(retract ?update))

;; Determines whether proportional amount of obstacles are to the;;;
;;;left or right to heuristically determine which way to turn. If ;;;
;;;equally blocked on both sides, calls for a replan of the route.;:;

(defrule CollectiveObstacleAssessment
(collectiveobstacle assessment)

(decision-change Maneuvering CollectiveObstacleAssessment
Low assessment

assesswhether-presents a-collisiondanger_andturn)
(bind ?obstacles_left 0)
(bind ?obstaclesright 0)
(do-for-all-instances ((?obstacle OBSTACLE))

(eq ?obstacle:collisiondanger YES)
(if (and (>- ?obstacle:bearing 270.) (<- ?obstacle:bearing 359.))

then
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(bind ?obstacles-left (+ ?obstacles-left M)
else
(bind ?obstacles -right (+ ?obstacles -right 1))))

(if (> ?obstacles -left ?obstacles-right) then
(bind ?turn turn-right))

(if (> ?obstacles-..right ?obstacles-left) then
(bind ?turn turn-left))

(if (and 'eq ?obstacles-right ?obstacles-left)
(neq ?obstacles-right 0)) then

(bind ?turn reverse-course)
(assert (ObstacleAvoidance restricted))

(Replan-Route ?turn ?*Goalx* ?*Goaly* ?*Goalz*))
(if (or (> ?obstacles-left 0) (> ?obstacles right 0)) then

(assert (Call-Guidance-Cownand ?turn rudder)))
(assert (Maneuvering-Status-Assess)
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Programmer W P Wilkinson
; System : CLIPS 5.0
; Program . AUV Mission Executor "SKIPPER"
; Functional Area Sub System Monitoring (Vehicle Internal World)
; Latest Revision 30 August 91

Description
; This is the high-level abstraction of the system monitoring
; functions of the AUV. This module is designed to be an overall
; subsytem "health" monitor and performs both high-level and low
; level polling of subsystems state. Some of the AUV systems
; (all of which are modeled as objects) include the
; powersources, navigation instruments, sonars, environmentalsensors
; and control_systems such as rudders, planes, thrusters. A continuous
; loop polls all systems, and the message-handlers associated with each
; class attempt to determine if a reading is out of range. These in
; turn produce facts which cause equipment rules to fire.
; Failure conditions cause the Equipment assessor rule to determine
; if an equipment going critical or an equipment failure will cause
; a restriction. If the functional area of Equipment Status has a
; a degradation, this is passed to the Overall Mission Assessor in
; in main file skipper.clp

Global Variables Pertaining to Equipment Monitoring;;

(defglobal ?*sysmonitor-salience* - 100
?*QtyEquipmentfailed* - 0
?*NrNavInstrumentsfailed* - 0
?*NrSonarfailed* - 0
?*NrEnvironSensorsfailed* - 0)

AUV Subsystem Monitor Objects

(defclass SYSTEM MONITOR (is-a USER)
(slot typeof reading)
(slot reading)
(slot degradation time)
(slot status (default NORMAL))
(slot Redundant Equipment (initialize-only))
(slot redlinehigh (initialize-only))
(slot guardlinehigh (initialize-only))
(slot guardline low (initialize-only))
(slot redlinelow (initialize-only)))
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;:; Power sources Which support the various equipments :;

(defclass POWERSOURCE (is-a SYSTEMMONITOR)
(slot type_opf_reading (default power _in_watts))
(slot Redundant_Equipment (default NONE))
(slot AlternateSource (initialize-only))
(slot redline-high (default 0.0))
(slot guardline-high (default 0.0))
(slot Equipment-Supported)
(message-handler get-reading))

(defmessage-handler POWERSOURCE get-reading after C
(if (and (< ?self:reading ?self:guardline-low)

(> ?self:reading ?self:redline-low)) then
(assert (EquipmentCritical ?self:EquipmsntSupported))
(assert (PowerSource failure ))

;;;;;:; Sonar class and objects ,,,,,

(defclass SONAR (is-a SYSTEMMONITOR)
(slot type-of-reading (default frequency in hz))
(slot redline high (default 50.0))
(slot guardline-high (default 40.0))
(slot guardline-low (default 5.0))
(slot redline low (default 1.0))
(slot statuschange time (default 0.0))
(slot recovery time (default 20.0))
(message-handler get-reading))

,,,,,,,,, Check Sonar readings for out-of-limit readings ,,,

(defmessage-handler SONAR get-reading after (
(bind ?sonar (instance-name-to-ymbol (instance-name ?self)))
(if (or (and (> ?self:reading ?self:guardline-high)

(< ?self:reading ?self:redline-high))
(and (< ?self:reading ?self:guardline-low)

(> ?self:reading ?self:redlinew))) then
(assert (EquipmentCritical Sonar ?sonar))
(send ?self put-statuschange time ?*mission-time*)
(send ?self put-status CRITICAL)

else
(if (or (> ?self:reading ?self:redline-high)

(< ?self:reading ?self:redline -low)) then
(assert (EquipmentFailure Sonar ?sonar))
(bind ?*NrSonarfailed* (+ ?*Nr~onarfailed* 1))

(send ?361f put-status INOPERATIVE)
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* *, ,, ,, ,, ,, Navigation Instruments *,**,,,,,,,,*,

(defclass NAVIGATION_-INSTRUMENT (is-a SYSTEM MONITOR)
(slot type of _reading (default power_in watts))
(slot time-critical (default 0.0))
(message-handler get-reading )

If a Navigation instrument is out of limits
.......................then tabulate the number failed and declare it

failed

(dofmessage-handler NAVIGATIONINSTRUMENT get-reading after 0)
(bind ?instrument (instance-name-to-ymbol (instance-name ?self)))

(if (or (> ?self:reading ?self:gjuardline high)
(< ?self:reading ?self:gjuardline-low)) then

(assert (EquipmentFailure NayInstrument ?instrument))
(bind ?*NrNavntrumentsfailed* (+ ?*NrNavntrumntsfailed* 1)

(send ?self put-status INOPERATIVE)))

Control Systems ;;..,.,.,~,.,

If these fail, this will eventually cause a Mission;
,,.,,,,,,,abort, unless the control is a Hover-Thruter, which;
,,,,,,,,,.at this stage of AUV development, is not mission- ;

critical

(defclass CONTROLSYSTEM (is-a SYSTEMMONITOR)
(slot type_of _reading (default potential -in -volts))
(Slot statuschange_time (default 0.0))
(slot recovery_ time (default 10.0))
(slot control-type)
(slot response (default normal))
(message-handler get-reading)
(message-handler get-response))

(defmessage-handler CONTROL_-SYSTEM get-reading after (
(bind ?control (instance-name-to-ymbol (instance-name ?self)))
(if (or (and (> ?self'.reading ?self :guardline high)

(< ?self:reading ?self:redline high))
(and (< ?self:reading ?self:guardline low)

(> ?self:reading ?self:redline-low))) then
(assert (EquipmentCritical ControlSystem ?control))
(send ?self put-status CRITICAL)
(send ?self pUt-statuschange_ time ?*mission-time*)

else
(if (or (> ?self:reading ?self:redline high)
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(< ?self:reading ?self:redline low)) then
(assert (Equipment Failure Control_System ?control))
(send ?self put-status INOPERATIVE))))

,,,,,,,,,,,,,,,DI,,,,.,,,,,,,,$,,, ,;;;,,,;,D,, ,,,,,,,,,,,,............

;;,; This is an added check for control systems instead of the
;;;; just the electrical status. If a control system does not
.,.; respond or is in the wrong position , this is an indication
;;;; of impending failure and is justification for a status of
... CRITICAL

(defmessage-handler CONTROL-SYSTEM get-response after ()
(if (neq ?self:response normal) then

(assert (Equipment Critical ControlSystem ?self))
(send ?eelf put-status CRITICAL))
(send ?self put-statuschangetime ?*mission_time*))

Environmental Sensors are evaluated for both
electrical status and the environmental reading they
indicate even when operating properly.

(defclass ENVIRONSENSORS (is-a SYSTEMMONITOR)
(slot type (initialize-only))
(slot environmentalreading )
(slot environmentupperlimit (initialize-only))
(slot statuschangetime (default 0.0))
(slot Redundant_Equipment (default NONE))
(message-handler get-reading))

This checks the environmental sensors for proper ;;D
operation

(defmessage-handler ENVIRONSENSORS get-reading after (0
(bind ?sensor (instance-name-to-symbol (instance-name ?self)))
(if (or (> ?self:reading ?self:redline_high)

(< ?self:reading ?self:redline-low)) then
(assert ( Equipment Failure EnvironSensor ?sensor ))

(bind ?*NrEnvironSensorsfailed* (+ ?*NrEnvironSensorsfailed* ))
(send ?self put-status INOPERATIVE)))
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Environment Limits Readings
This checks the environmental sensors for
environmental conditions which are out of limits.;;

*,. The rules which operate on these limits are part;:
of the environmental world and are found in module;;

environment.clp. This message-handler operates
on that world and is only included here for
convenience and polling.

(defmessage-handler ENVIRONSENSORS get-environmental-reading
after 0)

(bind ?sensor (instance-name-to-ymbol (instance-name ?self)))
(if (> ?self :environmental reading ?self:environment,_upperlimit)
then

(assert (Adverse -condition ?self:type ?sensor))
(send ?self put-status INOPERATIVE)))

Mission equipment is represented among the equipment;;
monitoring objects although it has little bearing on;;
present AUV missions in the NPS pool.

(defclass MISSIONEQUIPMENT (is-a SYSTEMMONITOR)
(slot type of reading (default potential -in -volts))
(slot statuschange time (default 0.0))
(slot type (initialize-only))
(message-handler get-reading)).

(defmessage-handler MISSION_-EQUIPMENT get-reading after 0)
(bind ?instrument (instance-name-to-symbol (instance-name ?self)))
(if (or (> ?self:reading ?self:guardline -high)

(< ?self:reading ?self:guardline low)) then
(assert (Equipment_-Failure MissionInstrument ?instrument))
(send ?self put-status INOPERATIVE)))
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:;The equipment elaborated here is representative of the NPS
;; AUV II, but is not necessarily accurate in all parameters. The :
::primary use of these is symbolic reasoning about equipment

(definstances Syamonitor-Bank
(Auzi Bat of POWER SOURCE (reading 40.0)

(Alternate-Source NONE)
(guardline-low 10.0)
(redline low 5.0)
(Equipment~upportied HOME))

(FWDSonarBat of POWERSOURCE (reading 40.0)
(Alternate-Source Awcl Bat)
(guardline low 10*~0)
(redline low 5.0)
(EquipmentSupported VW-sonar))

(PORTSonarRat of POWlERSOURCE (reading 40.0)
(Alternate-Source Auxi Bat)
(guardline-low 10.0)
(redline low 5.0)

(Equimnt,.Supported PORT-sonar))

(STBDSonar Bat of POWER SOURCE (reading 40.0)
(AlIternate Source Auxi Bat)
(guardline low 10.0)
(redline low 5.0)

(Equipment,_Supported STUD-sonar))

(DEPTHSonar Bat of POWER SOURCE (reading 15.0)
(Alternate Source Auxi B at)
(guardline low 10.0)
(redline low 5.0)

(EquimntSupported DEPTH-sonar))

(FND-sonar of SONAR (reading 35.0)
(Redundant EZquipment HONE) )

(PORT-sonar of SONAR (reading 35.0)
(Redundant_Equipment, NONE) )

(STUD-sonar of SONAR (reading 35.0)
(Redundant,_Equipment NONE))

(DEPTH-sonar of SONAR (reading 35.0)
(Redundant Equipment NONE))
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(Aux2_Bat of POWlER-SOURCE (reading 25.0)
(Alternate-Source N ONE)
(guardline-low 7.0)
(redline low 1.0)

(Equipment-Supported None NONE))

(DeadReckonBat of POWER SOURCE (reading 25.0)
(Alternate-Source Aux2 -Bat)
(guardline low 7.0)

*(redline low 1.0)
( quipment Supported Navigation Instrument

DeadReckonAnalyzer )

(GyroBat of POWERSOURCE (reading 25.0)
(Alternate Source Auz2_Bat)
(guardline low 7.0)
(redline low 1.0)

(Equipment Supported Navigationinstrument Gyro))

(DeadReckonAralyzer of NAVIGATIONINSTRWI4ENT (reading 5.0)
(RedundantEquipment Gyro

(redline high 10.0)
(guardlin e -high 8.0)
(guardline-low 4.0)

(redline-low 2.0))

(Gyro of NAVIGATIONINSTRUMENT (reading 4.0)
(Redundant_Equipment

DeadRackonAnalyzer)
(redline-high 8.0)
(guardline-high 6.0)
(guardline-low 2.0)
(redline low 1.5))

(Aux3_Bat of POWERSOURCE (reading 50.0)
(AlternateSource NONE)
(guardline-low 10.0)
(redlime low 1.0)
(Equipment Supported NONE))

(HoverBat of POWERSOURCE (reading 50.0)
* (AlternateSource Aux3_Bat)

(guardline low 10.0)
(redline-low 1.0)

(EquipmentSupported Control-System Hover-Thrusters))

(MotoriBat of POWER-SOURCE (reading 50.0)
(Alternate-source Aux3 Bat)
(guardline low 10.0)
(redline low 1.0)
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(Equipment-Supported Control Systemrive-Notor1))

(Motor2_Bat of POWERSOURCE (reading 50.0)
(AlternateSource Aux3_Bat)
(guardline low 10.0)
(redline low 1.0)

(Equipment-Supported ControlSystem Drive-Motor2))

(PlanesBat of POWERSOURCE (reading 50.0)
(Alternate-Source Aux3_Bat)
(guardline-low 10.0)
(redline low 1.0)

(Equipment-Supported ControlSysten Plane-Controls))

(RudderBat of POWERSOURCE (reading 50.0)
(AlternateSource Aux3_Bat)
(guardline-low 10.0)
(redline-low 1.0)

(Equipment-Supported Rudder))

(Hover-Thrusters of CONTROLSYSTEM (reading 7.0)
(control-type auxiliary)

(redline-high 10.0)
(guardline high 8.0)
(guardline_low 4.0)
(redline-low 2.0))

(Drive-Motori of CONTROL SYSTEM
(reading 7.0)
(control-type propulsion)
(redline high 12.0)
(guardlinie -high 8.0)
(guardlUne low 4.0)
(redline-1low 2.0))

(Drive-Motor2 of CONTROL-SYSTEM (reading 7.0)
(control-type propulsion)
(redlinejiigh 12.0)
(guardline-high 8.0)
(guardline low 4.0)

(redline low 2.0))
(Plane-Controls of CONTROLSYSTEM (reading 5.0)

(control-type depth)
(redline high 8.0)
(guardline_high 6.0)
(guardline-low 2.0)
(redline-low 1.0))

(Rudder of CON M LSYSTSK (reading 5.0)
(control-type azimuth)
(redline high 8.0)
(guardlinehigh 6.0)
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(guardline-low 2.0)
(redline-loy 1.0))

(Aux4_Bat of POWER-SOURCE (reading 20.0)
(AlternateSource NONE)
(guardline-low 10.0)
(redline-low 1.0)
(EquipmentSupported NONE))

(SeaTepBat of POWERSOURCE (reading 20.0)
(AlternateSource Aux4_Bat)
(guardline-low 5.0)
(redline-low 1.0)

(Equipment Supported EnvironSensor SeaTempSensor))

(SeaStateBat of POWERSOURCE (reading 20.0)
(Alternate Source Aux4_Bat)
(guardline-low 5.0)
(redline 1low 1.0

(Equipment-Supported EnvironSensor7SeaStateGyro))

(SeaTempSerisor of ENVIRONSENSORS (reading 3.0)
(environmental -reading 55.0)
(environment-.upperlimit 90.0)

(type potential )
(redline high 5.0)
(guardline-high 4.0)
(guardline -low 1.0)
(redline-low 0.5))

(SeaStateGyro of ENVIRONSENSORS (reading 5.0)
(environmental-reading 1.0
(environment_upperlimit 2. 0)

(type potential-in-volts)
(redline-high 8.0)
(guardline-high 6.0)
(guardline low 2.0)
(redline-ilow 1.0))

(PressureTransducer of ENVIRONSENSORS
(reading 50.0)

* (environmental reading 50.0)
(environment upperlinit 75.0)

(type potential-in volts)
(redline high 60.0)
(guardline-high 55.0)
(guardline -low 45.0)
(redline low 35.0))

(Hydrography Instrl of MISSIONEQUIPMENT
(reading 3.0)
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(type Surveying)
(redline high 5.0)
(guardline high 4.0)
(guardlinelow 1.0)
(redline-low 0.5)))

This continuously polls the equipment monitors to
:; determine if the equipment power readings are correct,
;; indicating that the equipment in functioning.

(def rule monitor health 1continuously
(declare (salience -500))
?maonitor <- (system Monitors running)

(do-for-all-instances ((?sonar SONAR))
(neq ?sonar:status INOPERATIVE)

(send ?sonar get-reading))
(do-for-all-instance ((?power POWERSOURCE))

(neq ?pover:status INOPERATIVE)
(send ?power get-reading))

(do-for-all-instances ((instrument NAVIGATION_-INSTRUMENT))
(neq ?instrument:status INOPERATIVE)

(send ?instrument get-reading))
(do-for-all-instances ((control CONTROL-SYSTEM))

(neq ?control:status INOPERATIVE)
(send ?control get-reading))

(do-for-all-instances ((?sensor ENVIRON_-SENSORS))
(neq ?sensor:status INOPERATIVE)

(proqn (send ?sensor get-reading)
(send ?sensor get-environmental_reading)))

(do-for-all-instances ((?Miss instrument MISSIONEQUIPMENT))
(neq hmiss -instrument:status INOPERATIVE)

(send ?miss-instrument get-reading))
(retract ?monitor)
(assert (check critical-equipment)))
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(def rule check critical-equipment
(declare (salience -500))
?check <- (check critical-equipment)

(do-for-all-instances ((sonar SONAR))
(eq ?sonar:status CRITICAL)

(progn (if (and (> ?sonar:reading ?sonar:guardline low)
(< ?3onar:readting ?sonar:guardline _high)) then

*(assert (Equipment -Recovery Sonar ?sonar))
(put ?sonar:status NORMAL)
else

(if (> ?*mission_time* (+ ?sonar:statuschange_ time
?sonar:recoveryjtime)) then

(put ?sonar:status INOPERATIVE)
(assert (EquipmentFailure Sonar ?sonar))
(send ?sonar put-status INOPERATIVE)))))

(do-for-all-instances ((control CONTROLSYSTEM))
(eq ?control:status CRITICAL)

(progn (if (and (> ?control:reading ?control:guardline-low)
(< ?control: reading ?control gjuardline -high)) then

(assert (Equipment_-Recovery ControlSystem ?control))
(put ?control:3tatus NORMAL)

else
(if (> ?*mission -time* (I- ?control:statuschange time

?control: recovery time)) then
(put ?control:status INOPERATIVE)
(assert (Equipment_-Failure ControlSystem ?control))
(send ?control put-status INOPERATIVE)))))

(retract ?check))

Assesses the impact Of loss or crippling of
;;vital equipment

(def rule Equipment -Status_-Assessment
(declare (salience ?*sysmonitor-salience*))
(or (Equipment Critical ?class ?Equipment)

(EquipmentFailure ?class ?Equipment))
(Equipment MissionEssential ?essential)

?assessflag<- (Equipment-Status-Assess)
?statusflag <- (EquipmentStatus ?status)

(bind ?*sysmonitor-salience* (4 ?*sysmonitor-salience* 1))
(decision-change System Monitor EquipmentStatusAssessment

Assessment Assessing ,Status
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4. ~ 7

(bind ?*Qtyzquipment_failed* (+ ?*Qtytquimntfailod* 1)
(if (or Q> ?*Qtyzquipment_;ailed* 2)

(eq ?essential yes)) then
(retract ?statusflag)
(assert (EquipmentStatus major failure))
(assert (propagate change))

else
(retract ?statusflag)
(assert (EquipmentStatus equipment critical))
(assert (propagate change))
(retract ?assessflag))

,; Establishes whether or not equipment has recovered. ;

(def rule Equipment_Rtecovery
(declare (salience ?*sysmonitor salience*))
(Equipment_Recovery ?class ?equipment)

(decision-change SystemMonitor EquipmentRecovery Assessment
resume-normal equip operations)

(bind ?*QtyEquipment-failed* Q- ?*QtyEquipment failed* U)
(if (eq ?*Qty~quipmentfailed* 0) then

(assert (Equipment Status normal))
(assert (propagate change))))

;;attempts to shift to alternate power source if one avail
places failed power source in the INOPERATIVE mode

(def rule PowerSource -Critical
(PowerSource failure)
(Equipmen_critical ?equip_clas ?Equipment)
(AlternatePowerSource ?source)

(decision-change System Monitor PowerSource_Critical Low
shift-power-source )

(Call-Guidance-Coamand shift-powersource-to ?source)
(send (symbol-to-instance-name ?source)

put -EquipmentSupported ?Equipment)
(do-for-instance ((?Battery POWERSOURCE))

(eq ?Dattery: quipment Supported. Equipmmnt)
(send (symbol -to-instance-nme ?Battery) put-status INOPERATIVE))
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Sonar Failure
;;; Determines if sonar failure is critical. If the ;;;
;;; depth sonar fails, the mission will be aborted. ;;;
;;; In any case, the effect must be reported to the ;;;
;;; intermediate level assessment rule.
,DpaeoDDoguQ..uo..oFDoISDD.....uugg,,uu..g,,DS...

(defrule SonarFailure
(EquipmentFailure Sonar ?some_sonar)

(decision-change SystemMonitor SonarFailure Low
PassinfotoEquip_Assessor)

(if (eq ?somesonar DEPTH-sonar) then
(assert (EquipmentMissionEssential yes))
(assert (Equipment-Status-Assess))
else
(assert (Equipment MissionEssential no))
(assert (Equipment-Status-Assess))))

(defrule Sonar Critical
(EquipmentCritical Sonar ?some_sonar)

(decision-change System Monitor SonarCritical low
Passinfoto EquipAssessor)

(if (eq ?somesonar DEPTH-sonar) then
(assert (Equipment Mission_Essential yes))
(assert (Equipment-Status-Assess))
else
(assert (Equipment MissionEssential no))
(assert (Equipment-Status-Assess))))

Attempts to shift to back up nay instrument when one goes
critical

(defrule Navigation InstrumentFailure
(Equipment-critical Navigation Instrument ?instrument)
M>

(decision-change SystemMonitor NavigationInstrumentFailure Low
Shift to_Redundant_Equipment)

(do-for-instance ((?other-instrument NAVIGATIONINSTRUMENT))
(and (eq ?other-instrument:Redundant Equipment

?instrument)
(eq ?other-instrument:status normal))

(Call-Guidance-Command Shift-NavInstrument-to ?other-instrument))
(assert (EquipmentMissionEssential no))

p (assert (Equipment-Status-Assess)))
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Control System Failure
;;; Assesses any control system failure except for ;;;
;; Hover-Thrusters as a failure of mission-essential ;;;

,;; (i.e., vital) equipment.

(defrule Control System Critical
(EquipmentCritical ControlSystem ?control)
W>

(decision-change SystemMonitor ControlSystem Critical Low
Pass_info_to_EquipStatus_Assessor)

(if (neq ?control Hover-Thrusters) then
(assert (EquipmentMissionEssential yes))
(assert (Equipment-Status-Assess)))

(defrule ControlSystemFailure
(EquipmentFailure Control System ?control)

(decision-change SystemMonitor Control-System Failure Low
Pass_info_to_EquipAssessor)

(if (eq ?control Hover-Thrusters) then
(assert (EquipmentMissionEssential no))

else
(assert (EquipmentMissionEssential yes))
(assert (Equipment-Status-Assess))))

,,,D,::,::,:,,D,:,,D::,I:,,,,,,,::::g,,,SDD:ggDDDS:tDSID

Environmental Sensor Failure
;; These have the least effect on the Equipment

;;; functional area. The pressure transducer is the
,;; only environmental sensor considered vital

(defrule Environmental SensorFailure
(EquipmentFailure EnvironmentalSensor ?sensor)

(decision-change SystemMonitor Environmental SensorFailure
Low Pass_info_-to_EquipStatus_As sessor)

(if (neq ?sensor PressureTransducer) then
(assert (Equipment Mission-Essential no))

else
(assert (Equipment Mission Essential yes))
(assert (Equipment-Status-Assess))))
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;;;; Programmer : N P Wilkinson
;;;; System : CLIPS 5.0
;;; Program : AUV Mission Executor "SKIPPERw

;;;; Functional Area : Environment

;;: Latest Revision : 04 Sep 91
--

Description
This is the abstraction of the Environmental world.
Environmental out of limits readings cause the environment
to degrade, but mostly are isolated phenomena. If a
collective degradation occurs, this signifies a negative
trend in the environment and reason for AUV to abort the
mission.

;;;; Global Variables Pertaining to Environment
DDII,•DIDDIDDDIDDDDIDIIIDIDIDDDDDDDDDDDeIDDIDDDD

(defglobal ?*environmentsalience* - 100
?*QtyEnvironProblems* - 0
?*sea state-thresh* - 3)

Environmental Assessor
DIDoIeIDIIIIIDIooDIIDeeDIDDIIDD••DDDo•••DDIID•DDIDIDoeDIeoeDeeeIeDIeIID

;;;This assumes that a single environment problem is not critical ;
:;;; in itself. Rather, an aggregate of out-of-range sensor readings ;
;;;; indicate a large environmental phenomena such as a storm. In ;;;
;;;; such a situation, the environmental situation would be
;;;; severely degraded, causing AUV to abort the mission. ; ;

(defrule Environment_Assessor
(declare (salience ?*environmentsalience*))
?cond <- (Adversecondition ?type equipment)
?current <- (EnvironmentalStatus ?status)

4>

(retract ?cond)
(decision-change Environmental_.world EnvironmentAssessor

Assessment determine_i f_environmentstatus_is_hazard)
(bind ?*QtyEnvironProblems* ( + ?*QtyEnvironProblems* 1))
(if (- ?*CtyEnvironProblems* 3) then

(retract ?current)
(assert (EnvironmentalStatus major-deviation))
(assert (propagate change))))
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Separate rule (implicit "or" with the rule above) ;
;;; to indicate the effect of a sensor loss

(defrule EnvironmentAssessor Equipment
?equip <- (EquipmentFailure EnvironSensor ?sensor)
?environ-status <- (EnvironmentalStatus ?status)

(decision-change Environmental world EnvironmentAssessor
Assessment determine-if environment equipfailure-is-hazard)

(bind ?*QtyEnvironProblems* ( + ?*QtyEnvironProblems* 1))
(if A>- ?*QtyEnvironProblems* 3) then

(retract ?environ-status)
(assert (Environmental_-Status major-deviation))
(assert (propagate change))

(retract ?equip))

Environmental World Rules

;;This handles environmental sensor readings which are
;;out of limits. Low level actions to guidance areDI
*, imdiately generated while the command to collectively
;:assess the environment is made.

(def rule attitude sensor
(Adverse-condition attitude ?equipment)

(decision-change Environmental-world attitude-sensor
Low level dive to avoid ocean_turbulenoe)

(Call-Guidance-Comid dive-24-planes)
(assert (Assess-Environment)))

(def rule pressure-sensor
(Adverse-condition pressure ?equipment)

(decision-change Environmental-world pressure-ensor Low-level
ascend to avoid pressure-limits)

(Call-Guidance-Command. ascend-lO planes)
(assert (AsesesEnvironment)))
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(defrule temperature sensor
(Adverse condition temperature ?equipment)

(decision-change Environmental world temperaturesensor Low-level
determineif temp. change indicates navigation-error)

(Call-Guidance-Comnand Verify-Location navigation))
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APPENDIX &. TESTNG SCLWARJOS

1. SCENARIO I

O.JPS> (watch statstics)
CIPS> (batch uploadbat)
CLEPS> (close)
FALSE
CLIPS> (clar)
CLIPS> (load skipper.clp)
Defining defgloba: *Starijiin*
Defining defgloba: %gssion tim*
Defining defglobal: *nssion...degradation-tim
Defining defglobal: *recovery-tiine*
Defining defglobal: *Tm-nterval*
Defining defglobal: *eergencysalie=c*
Defining defglobal: *mssionsriticat-power*
Defining defglba: *Fuctionlmailur*
Deffining defglobal: *Functiofal-waeasriical*
Defining defgloba: *currentmeet*
Defining defglobal: *Goalx*
Defining defglobal: *Goaly*
Defining defglobal: *Goalz*
Defining deffunction: show-demo-desciption
Defining deffunction: copy-old-instance
Defining defcass block DECISION
Defining deffuniction: decision-change
Defining defclass block EVENT-SCHEDULE
Defining defrnesage-handler execute-event primmy in class EVENTSCHEDULE.
Defining defclass block POSTURE
Defining deffunction: Call-Guidance-Waypoint
Defining deffunctiout: Call-Guidance-Command
Defining deffuntion: Replan-Route
Defining deffunction: Abort-Route
Defining definstances block STARTINGJ)ECISIONS
Defining deffacts: Starting-Facts
Defining defrule: initialize-Vehicle +j
Defining defrule: upload +j+j+jj
Defining defnale: Mission-Timer +j
Defining ddefrle timrnager +j
Defining defrul: Documentjdssion +
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Defining defnule: eventjcbedulejnnager +j
Defining deffunction: TotaI-Functional-Problenis
Defining defrle: OveralLhisson.Assaw +j+j+j+j+j+j+j
Defining defrue: Continue-Missionjunrestricted +j+j~j+j+j
Defining defmule: Continue-missonjsuicted-upae +j+j
Defining defrule: Continue-mission-reurictedinitdl-j
Defining defrue: -it ion +j+j+j
Dening deffunction: display-statu
Defining defrule: showjtazu.board =j+j+j+j+j+j+j+j+j
CLIPS> (load maevm.clp)
Dening dcfglobal: wfmneuve..slence*
Defining defglobal: *obswalejref*
Deinng defgiobul: %obsmdc.clemcejime*
Defining defglobal: *avodance tme*
Defining defglba: *maneverbityjactor*
Deiing defclass block OBSTACLE
Defining dehmssage-handler obstacle-change prinmy in class OBSTACLE.
Defining defmue: ManeuverinL-Staw-us..essment +j~j+j
Defining defrul: ManeuverinStatus..Msssmenong..ang +j+j+j
Defining defrue: ManeuveinEqupmnentFailre, +j
Defining defrule: emnergency-aneuver-.evaluation +j

Defining defrue: Assess-Avoidancejdanever +j+j
Defining defrul: emergency-evasive-mwwanve-ascend +j

Defining defmue: emergency-evasive-numar-kghasend +j
Defining defrue: emrgncy-evasive- meuveigt +j

Defining defule: emergency-evasive-maneuver-stopascend +j

Defining defrul: abnonal-suface +j+j+j
-ju4~
Defining defrue: abnormd-ascent -j-j+j

Defining defrue: abnornmaidive uj+j+j

Definng defmule: Obsuclej~econ..NonWnimits +j+j
Defining defrle: Obsocle.Updose mj+j
Dening dWhile: Collective..Obstacle,.Assesument +j

LIPS> (load navlgation.clp)
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Defig :*tbNwhmMW

Delmisng dd*W: a*Nsaopmanceu
Defining defglobu: %s~dA diq CS
Definig deiglba: fBamt m ~ w

Defising defglobul: 0 uobstakd minumvia*
Defining defrhl: NavigatiuLAueun=n +j+j

Defining defr.e: Navigatim-AsmzmLlquilument +j+j
Defining defrdle. Ewu-gAuum=m +j+j
Defining deftole: OouL.Recognitin +Jjj
Defining defrnle WaypoWLnivk-Dphmpuion4ol~aeck *Jj~j
Defining defrule Waypalajmmdwr +j+H~
Defining defrule: WaypancellmernEnergy.Check umj+j

Defining defrule: Thm..Deviado +j

Defining defrule: depd-somiding-deviaton..sor-nge =-j

Defining defrule: DepdLoningdeahoon +jg --
CLIPS> (load sensarclp)
Defining deiglobal: y onruaece
Defining defglabu: *QyEqnipmUnKfile*
Redefining defglbsl: ?*NrNav nuetfaiBed*
Defining defglobsl:NSIIaId
Defining defglobul: *N~vircsm 4-1 runiled*
Defining delcias block SYSTEI.LMONIOR
Defining deicau block POWERSOURCE
Defining Idefmemge-bmdler get-reading ait in clans POWER.-SOURCE
Defining defclm block SONAR
Defining APEfnuaebd ge 20eading after in clas SONAR.
Defingdefim block NAVIOATIOJNSMhUMENT

DefiingIs 0p -get-reading after in clas NAVIGATIDNJNSTRUMENT.

Defnin A 0 2 Prget-reading aftr in clas CON72OL-SYSThI.
Agee-reHponse after in clas CONTROL..SYSIh?&

Defiingget-reading aftr in chas ENVIRONJSENSORS.
Defining defhmsmg-hader get-envionmemtlauding after in clas
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ENVRON-SENSORS.
Defining deklass block MIONJBQUWPMEENT
DefInig dfuuughmde StaaIing after in class MISSION...QUPMENT.
Definig delsmcsblock Sysnionitr-Bauik
Defining dehiue: nubfwajmeadLeondnuousdy +j
DefinS debe: check_;aidcaLeqVpmet +j
Defining delnule: EquipmenLSta=-..Assessmenz 4j+j~j+j

* Defiing defiule: Eq~ipmenLRecovay +j
Definig defnale: Fbwaf S$ _eQitica1i~
Ddlain dcrlta. Sawarj mx 4-i
Defining dub:. Sonar..Oidca 4-i
Defining defile: Navw-~mIwnruu ?it+j
Defn defile: Ccmtc SyssNwLQidca *j
Definig defmule: ConwoLSyssemLatiue 4-i
Defimig defmule: Evironmul aLSenor.Yailur 4.j
CLJPS> (load evftirofmenicpt
Defining defgboba: *evlonmenLsajinc*
Defining defgbob: *QtyEnviroProbem*
Defining defgbob: *uea...swe..hs*
Defining defmue: EnvionmentAssesso +j~j
Defining defule: Envftonmen-Assesor-...qfpmnt +j+j
Defining defrue: maiuesenwo 4-i
Defining defrule: presaue...unsor 4-i
Defining defnu: --e mmpeaur -eso +j
CLIPS> (aese)
CUPS> (run)

WelcomeI dI th SSION EXEMCU'IVR DEMO

WAYPOINT: All iceais take place ove -ws set
* ~of INIIAL waypoint comwIinaftL

EQUIPMENT: AU equipmh Is mmd in dhe evmn file
Objects wec cmaod for each onbowd equipmet

SITUATIONS: AU siuation w also siulated in dhe even
file. For istace - obstacle desection is
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Ua~d nd tduamb"e t ObtCle Avalime
Dedion~wpm.; dii lmmdwovh

tinterface ote Eecoor.

SM~AR1 CMCS: select mmobe <Ret>
I WaypoiaLJ~opinh Only (Mank)
2 Obstecle Avoidane
3 Vehicle Control System Failur
4 Obstacles and Environagmen, toblemns
5 Equmnaiures
6 Exit dhe Simulator

I

>>>>>>>>>>> Decision < C< C
type :Navigation
rule :WaypointArrival-DephComparison
level : Lw-aasmeut
action: demernine..type-.o-depth..change
time : 0.232

>>>>)>>>>>> Decision <«c<<
type :Navigation
mle WaypointDisuwmcellefheck
ioval Lowuaumeant
action: determine-iffneed-lojncreae.upeed
time : 0U07

>>>>>> Decision ~ccc
type :Navigation
=ulet Waypontumonio

levl a-asesDen
tin F l e m mm exLwaypoiuLan&Jequnce

time: 0.56

I sdlppees Display I

TIME im uua..mcs 0:00
OvarAf Mission Statu >>> Continve..Unreuicted <c
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Manueverin&-Status : unrestricted
EquipmnenLStatus :normal
NavigatonStatus: widhinjolerance
EavironmenLstatus: normal

Spec-.Mission..status: feasible

I evoution : Unst
I deth-status :dive

I Last Command to Guidance: underway
I enrute-waypoint I

I OsalsI

I Diretion I Proximnity I TypeI

I EQUIPMENT DOWN I

Event Number: I

Description : passing-waypomnt

Time :10.000

>>>>>>>> Decision <<<<< <<
type :Navigation
rule :WaypointArrival-DepthComparison
level :Low-asseasinnt
action: determine-type..ofdepth-.change
time :10.207

>>>>>>>>>>> Decision <<<<<<<<
type :Navigation
rule :WAypomn-DistancTh=-QCbek
level :Low..assessment
action deserminejitneed-o-ncrem-..speed
time :10.3W
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>>>>>>>>>>>> Decision ««««c«<
type " Navigation
rule :Waypoint..monitcr
level : Lowassessment
action: asss-nexLwaypoinLand-sequence
time 10.543

I SkIpps Display I

TIME in minsecs 0.10
Overall Mission Status >>>> Continue-Unresticted <
ManueverinStatus: unrestuicted
EquipmenLStatus normal
NavigationStatus within tolerance
Environmat.Lstatus: normal
Spec_.Mission.status: feasible

I evolution transit
I depth-status : dive

I LaIst Command to Guidance: mark-on-top
I enroute-waypoint : 2

I Obstacles

I Direction I Proximity I Type

I EQUIPMENT DOWN I

Event Number: 2

Description : passinL.waypoint

T1me :38.000

>>>>>>>>>>>> Decision << <<

type : Naviption
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rule : WaypointArrival-DepthConiparison
level : LoW..assssmOnt
acton: determine..ype..of-depth-.change
time :38.26

>>> >>> >> Decision « <C

Wype Navigation
rule :Waypoint..DiswnceTieCheck
level :Low..asaessment
action: deterImiR-fJIcedJlo-ncreaseCspeed
time :38.444

>>>>>>>>> Decision <C««««<<
type :Navigation
rule :Waypoint-monitor
level :Low-assessmant
action: assess..next-waypoint-and-sequence
time :38.607

I Sktippers DisplayI

TIME in min..secs 0:38
Overall Mission Status >>> Continue-Unrestricted «
ManueverinL.Status: unrestricted
Equipmen~Smau normal
Navigation...tatus: within-tolernce
EnvironmenLstatus: normal

Spec-Mission-.status: feasible

I evolution :transit
I depthstatus :dive

I Lost Cnnan to Guidance : mark..on-top
* I enroute-waypoint :3

I Obt~sI

I Directoo I Preadmity I TypeI
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I EQU WNqTDOWN I

Event Number: 3

Description : passing-waypoint

Ime :107.000

>>>> Decision <<<<<<<<<
tip : Navgaion
rule : WaypointArrival-DepeCoapauison
level : Low-assesaent
action: detenninejtype..of-epth-chmpg
tim 107.276

>>>>>>>> Decision «
tye Navigation
rule :WaypointJisanceimeCheck
level :Low-.assessmnt
action: demay ine-ifjaeedjo-ncrase.speed
time : 107.456

>>>>> >>> Decision <<< c«<<<
tye Navigation
nile :Navipaton.Msessmnent
le~e: Assessment
action: &PeP aie-Nav.Status-.an&.pss-to-.OvealLMission-assessor
time : 107.620

>>>>>>>>> Decision <(«««««<<
type: Navigation f

rule WaypoinLmonitor
level Lowassesament
action: asseajtmwaypointandsequence
time : 107.781
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I Sktipper's DisplayI

TIME in win secs 1:47
Overall Mssion Status >>> Continue_Unrestricted <<<
ManueverinL-Status : unrestricted
EquipmenLStatus normal
NavigationStatus :witin-tolerance
Environment..status: normal

Spec...Mssion..status: feasible
----------------- -- -I

I evolution : tt
I depth-status no-depth-change

I I.Ast Command to Guidance : mark-on-top
I enroute-waypoint 4

I ObstaclesI

I Direction I Proximity I Type

I EQUIPMENT DOWN I

Event Number: 4

Description : passing-waypoint

Tume :125.000

>>> Decision <C<<<<<<<<
type :Navigation
rule :WaypointArrival-DepthComparison
level :Low..assessment
action: desrminejtype-of-depth-change
time :125.232

>>>>>>>>> Decision <<<< < <<
type :Navigation
rule :Waypoint-DisamnceTime..Check
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level : Low-assessment
action : determine-jfneedtoicesspd
time :125.415

I Skcipper's, DisplayI

TIME in min-secs 2:05
Overall Mission Status >>> ContinueUnrestricted <<<
Manuevering-.Status : unrestricted
EquipmenLSwau normal
Navigation-Status: witin-tolerance
Environment,_.status: normal

Spec..Mission-status: feasible

I evolution :transit
I depth-status: no-depth-change

I Last Command to Guidance: Increase-Speed
I enmoute-waypoint : 4

I ObstaclesI

IDirection I Proximity I TypeI

I EQUIPMENT DOWN I

> >> >>>>>> Decision <<<<<<<<
type :Navigation
rule :Waypoint..monitor
level :Low...assessment
action: assess...nex-waypoinL-and-.sequence
time :126.153

Event Number: 5

Description : passing-waypoint

Time :145.000
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>>> Decision ««
type Navigation
rule :WaypointArrival-Depth~omparison
level Low-assessinent
action: deterinne-type...odepth-change
time :145.203

>>> Decision <««<< <<,<
type Navigation
rule Waypoint..DistanceThme-.Check
level Low-ssessment
action: detennine-if-need-to-increase..speed
time :145.388

>>>>>>>> Decision <«««««<<
type : Navigation
rule : Waypoint..monitor
level : Low-assessment
action : assess...nexLwaypoint..and-sequence
time :145.551

I Sipper's Display I

TIME in m~in...secs, 2:25
Overall Mission Status >>> ContinueUnrestricted <<<
ManuevermLStatus : unrestricted
EquipinenL~tatus : normal
Navigation-.Status: within-tolerance
Enirwimentstatus: normal
SpcNission.status: feasible

I evolution :speiss
I depth-status :no-depth-change

9 I
I Last Command to Guidance : mark..on-op
I emaoute-waypoint : 6

I Obstacles 1
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I Diection I Pmximty IType

I EQUIPMENT DOWN I

Event Number: 6

Description : passing-waypoint

Time : 167.000
******* ******* *** *** ******* ***** ***** *** ***

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type Navigation
rule : WaypointArrival-DepthCompanison
level : Low-assessment
action: determine-typeof-depthchange
time : 167.201

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : WaypointDistanceTimeCheck
level : Low-assessment
action: detaminf_need-toincrasespeed
time : 167.391

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type Navigation
rule : Waypoint-monitor
level : Low-assessment
action: assessnextwaypoint-and-sequence
time 167.554

I Skipper's Display I

TIME in mn nsecs 2:47
Overall Mission Status >>>> Continue_Umesmcted <<<<
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ManuevernnLStatus : unrestricted,
EqupmnLStatus :normal
Navigation-.Stas: within-olerance

nvironment.statuis: normal
Spec-ihsion-status: feasible

I evolution :specmniss
I depthi-status ascent
I
I Lan Command to Guidance: mark.onjop
I enroutewaypoint :7

I Obstacles I

I Direction I Proximity I TypeI

I EQUIPMENT DOWN I

Event Number: 7

Description : passing-waypoint

ime :175.000

>>> Decision <<<<««««<<
type Navigation
rule :WaypointAffival-DepthComparison
level :Low..assessment
action: determinejype.of-depth-change
time :175.227

> >>>>>>>> Decision <<<<<«««<
type :Navigation
rule :Waypoint..DistanceTime..Check
level :Low...assessment
action: determnejfneed-to increas...speed
time :175.418
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>>>>>>>>>>>> Decision <<<<<< <
type Navigation
nile : Waypoinmonitor
level Loiwasseument
action: asseasnext-waypoinand-sequence
time : 175.583

I Skipper's Display I

TIME in min-secs 2:55
Overall Miion Status >>>> ContinueUnrestricted <<<<
Manuevering.Status: unrestricted
EquipmenStatus normal
NavigationStatus : within-tolerance
EAvironment.status: normal
SpecMision-status: feasible

Ievolution : transit
Idepth-status ascent

I Last Command to Guidance: mark-on-top
I enoute-waypoint : 8

I Obstacles I

I Direction I Proximity I Type I

I EQUIPMENT DOWN I

Event Number: 8

Description : passing-waypoint

Tune : 196.000

>>>>>>>>>>>> Decision <<<<<<<<<<<<

type : Navigation
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rule WaypoiwtArrival-DeptComparison
lvl: LoAw..asWS nt
action: detert inejype.o..depth..chage
tie: 196.219

>>>>>>>>>>>> Decision < <
type Navigation
rule WaypoinLDistanceT'meCheck
level L w eament
action: determinefit-eedtoices-pe
time 196.415

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : WaypoinLimonitor
level : Lowassessment
action: asess-next-waypoint._andsequence
time : 196.580

I Skipper's Display I

TIME inmin-secs 3:16
Overall Mission Status >>>> Continue_Unrestricted <<<<
Manuevering.Status : unrestricted
EquipnenLStatus nomal
Navigation-Status: withinjolerance
Envh'onmenLstatus: normal
SpecMissionstatus: feasible
-----------------------------

I evolution : tmnsit
Idepth-status: surface

I Last Command to Guidance : markon-top
I enmute-waypoint : 9

I Obstacles I

I Direction I Proximity I Type I
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I EQWPHENTDOWN I

Event Numbe: 9

Description: passing-waypomnt

im : 210,000

>>>>>Made it to Gokc c<<<
At dime : 210.03 -600 n0 n0 0 1

18365 rules fued Run time is 212.2829999999994 seconds
86.51187330120663 rules per scond
16 men number of facts (20 maximum)
2 mean number of activations (5 maximum)

LWpS> (dribble-oft)
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2. SCENARIO 2

CLPS (Watch -AIS
(LIPS> (balch uploedbat)
(LIPS> (clos)
FALSE
CLIPS> (clea)
CLIPS> (load skipper cip)
(LIPS> (load --evnncp
CLIPS> (lod mawtcmp
CLIPS> (load sensorclp)
(LIPS> (load evlRPOMARALclp)
(LIPS> (reMe)
(LIPS> (run)

Welcome to the MSSION EXECUTOR DEMO

WAYPOINT: All scenarios take place over the same ant
of INIIAL waypoint coordinates.

EQUIPMWENT:- All equipment is simulated in the evet file
Objects are created for each onboard equipment

SITUATIONS: All situaions are also simulated in the evet
file. For instance, an obstale detection is
listed and this simulates the Obstacle Avoidance:

Deciion~kerpassing this information throgh
the interface to the Executor .

SCE3NARIO CHOCES: select number <Res>
I Waypoil"pping Only (tMani)
2 Obstacle Avoidance
3 Vehicle Consul System Failui
4 Obstacles and Enviomn Problm

5 BipmemntFlwes
6 Exit the Simuilator
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>>>>>>>> Decision C<C<

tMe Naviad
robe Waypori-c pdCoyimn
b : Lowu~ne
action: Wdeeypeo-depdcange
time: 0.247

>>>>>>>>> Decision «cc<
tMe Nsiton
ruie : WaypoinLDistancac~n.Cbeck
level: Lowassment
-cin pdHMeuuP inef-eedoirease..seed
time :0.423

>>~>>>>>> Decision
typ Navigstion
rtu~ Waypoinumnitor
level: Lwan
action: aseapwypokx=sequence.
time :0.58

I SkIppei Display I

TIME in amn..secs, 0.00
Overall Mission Swais >>> Coundnue-.Uneuiced «
aniseveriag-Sttu: uwwsied

Navigadog..SMu wkina-olernce
BOACMOO'staua:normal

Spec-Mission-astnt feasible

I evoho div

I Lan Cmmend so Guidance: underway
I amyyl :1
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Obstacles I

I Diretion I Pioxiinity 1TypeI

I EFQUWENT DWN I

Event Number: 1

Description: passing-waypoinLl

'Time :10.000

>>>>>>>>>> Decision «««
type Navigation
rule :WaypoinLArrval-DepthComparison
level :Low-assessment
action: determine-type-of-depthshange
time :10. 193

>>>>>>>>>> Decision «««
type :Navigation
rule :Waypomnt..DistanceTime..Check
level :Lowasssment
action: deten ninejf-need-to-increase-speed
time : 10.368

>>> Decision <«<< c««<<<
type :Navigation
rule :WaypomnLmonitor
level Low..assment
action: aiss.exmtwaypoinLand..sequence
time :10.531
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I Skippes Display I

TIE in min-pecs, &.10
Overall Mission Status >>> Continue..Unrestricted <<«
MKAfhleveinL-Status : unrestricted
EquipmenLStaus :normal
Navigatios..Status: witbin-tolerance,
EnvironmenLstatus: normal
Spec)Aission..status: feasible

I Cvolutio trasit
I depth-statu : dive

I Last Command to Guidance: mark..on-op
I cnroutewaypomnt :2

I Obstacles I

I Direction I Proximity I TypeI

I EQUIPMENT DOWN I

Event Number: 2

Description : phssimgwypomnt-2

ime :20.000

>>>>>>>> Decision «<c.
type : Navigatio
rule, : WaypointArrival-DepthCompazison

lvl:Low-usmumt
action : desermine-type-.o-deAhsbange
time : 20.627
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>>>>)>>>>>> Decision ««
type Navigation
rule :WaypointjDistanceTime-Check
leve l Lwjsuessment
action: dae nine-fee-oicwspd
time : 20.804

>>>>>>> Decision <««
type :Navigaton.
rule :WaypoinLuofitor
level :Low..asssmnt
action: assessjiex~waypoin.and-s.equence
time : 20.968

I Skipper's Display I

TIM in mnnjecs 0:20
Overall Mission Status >>, ContinueUnrestricted <<c«
Manuevering-Status : unrestricted
EquomlenLStatus :normal
Navigaton-.Status: widin-tolerance
Environmenistazus: normal

Spec...iion-status: feasible

I evolution :transit
I depth-status :dive

I Last Command to Guidance: mark-on-top
I enroute-waypoint : 3

I ObstaclesI

I Direction I Proximity I Type

1 EQUIPMENT DOWNI
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F, 177- M

Event Number: 3

Description: obstacles..close.abourd

Mime :27.000

>>>>>>>>>>> Decision « « C«
type :Maneuvering
rule emarmcy-evaaave-maneuver-ascend
kwvl Low-uavisoy-evel
action: asowd~toavoidobsmaclc
time : 27.232

I Skippes; Display

TIME in min-secs, 0:27
Overall Mission Status >> Continue Unrestricted <<c«
ManueverznLStatus : unrestricted
Equipnaent.Status normal
Navigation-.Status within jolerance
EnviroomeaLutatus: normal

Spec..Mission-.status: feasible

I evolution transit
I depthi-status :dive

I Lasn Coannan to Guidance : ascend-?*safe-depth*
I enroute-waypoint : 3

I Obstacles I

I Direction I Proximity I TypeI

I EQUIMENT DOWN I
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type Navigation
rule : depth.soundingdeviationshortmg
level low.supervisory
action: avoidLpossible-shoaling
time : 27.968

I Skippes Display I

TIME in minsecs 0:27
Overall Mission Status >>>> ContinueUnresticted <<<
ManueverinLStaus : unrestricted
EquipmenLStres :normal
Navigation-Sausu: within-tolerance
Environmentstatus: normal
SpecMissionstatus: feasible

I evolution : transit
I depth-status : dive

I Last Command to Guidance: ascend-?*safe-depth*
I enroute-waypoint : 3

I Obstacles I

I Dbrction I Proximity I Type

I EQUIPMENT DOWN I

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Maneuvering
rule : emergency-maneuverevaluation
level : assessment
action : assessemerncy-obstacle-avoidancejmaneuvers
time : 28.704
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Event Number: 4

Description : passing-waypoint_3

Tune :35.000

>>> Decision <<<<<<<<
type :Navigation
rule :WaypointArrival-DepthComparison
level :Low..assessment
action: detninejype..of-depth.change
time :35.201

>>>> >> Decision <«««c<<<
rype :Navigation
rule :Waypoint..DistanceTime-Chock
level Low...assessment
action: determine -if-need-to-increase.speed
time :35.380

1 Skipper's Display I

IME in min-secs 0:35
Overall Mission Status > Continue_Unrestricted ««<
ManueverinL-Status : unrestricted
Equipment..Status :normal
NavigationStatus: withn-tolerance
Environment-status: normal

Spec-Mission-.status: feasible
-------------------------- 1

I evolution :transit
I depth-status : dive

I Last Command to Guidance: Increase-Speed
I enroute-waypoint : 3

I ObstaclesI

I Direction I Proximity I Type
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I EQUIPMENT DOWN I

>>> Decision <<<<<<<
type Navigation
rule :Waypoint-monitor
level Low-..assessment
action: asss...next-.waypoint-an&..sequence
time 36.133

Event Number: 5

Description : obstacle -detected-at~norma-range

Time :41.000

Event Number: 6

Description : obstacle-classified-as-new

Time :41.000

>>>>> Decision <<<< <<<
type : Maneuvering
rule : Obstacle-detectionNormaL-Limits
level : Low..assessment
action: classify-noinaLrange-obstacle~as-new
time :41.439

>>>>>>>>> Decision <<<<<<<
type :Maneuvering
rule :Coilective-.Obstacle..ssessment
level :Low..assessment
action: assess.whetheresents-a-colisionjlanger-and-tum
time :41.650
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>>>>>> Decision <««
type : Maeuvering
rule :ManeuvenLStzso-Assessment
level :maneuvering-assessment
action: change-oveall-maneuvering-status
time :41.817

>>>>> >>>>> Decision <«
type :Overal-ision
Mue :Overall Mission-Assessor
level: High
action: Continue~fission-withjrestrictions
time : 41.988

> >>>>>>> Decision <<<<< < <<
type :OverallMission
rule :Continuemidssion_restricted~jnitial
level :Assessment
action: Note-time-of-status-change
time :42.149

Event Number: 7

Description : obstacle..Aetecte-a-orma-range

Tlime :41.000

Event Number: 8

Description : obstacle.Alassified..as-new

Time :41.000
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) >>>> Decision <<<<<<<<<
type Maneuvering
rule Obstacle-detectionjiormal.Limits
level :Low~assessment
action: classifyjionulrangeobsacle..as-new
time :42.786

Event Number: 9

Description : obstacle-detected-at-nonnaL-range

Tne :45.000

Event Number: 10

Description : obstacle-lassified-as-new

Time :45.000

>>>>>>>>> Decision <<<<<<<<<<
tye Maneuvering
rule Obstacle...detection-.NornalLimits
level :Law...assessment
action: classify-normal-range...obstacle-as-new
time :45.453

Event Number: 11I

Description: obstacledetected-at-normljange

rti 50.000

Event Number: 12
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Deinciption: obsmace..classified-as..new

Mume 50.000

>>>>>>>>> Decision <<<<<<<<<
type :Maneuvering
rule :Obsucle..Aetection.YcrniaL-1ins
L-vM Low~puae wmnt
acton: clasify-.norannangeobstce....as.new
time :50.452

>) >>>>>>> Decision <<<<<<<<<
type Maneuvering
rule ManeuveingLStaus-Asessnint
level :maneuvering-assessment
action: change-overall-nianeuvering-status
time :57.079

>>>>>>> Decision <<<<<<<<<<
type :Ovenll-Mion
rule :Overail-bission-Assessor

lee:High
action: Abar~mission
tme : 57.251

>>>>>>>>> Decision <<<<<«««<
type :OveralLMission
Mue :AbortMission
level :Low
action: lock..ts.andjeplanjroutejoabortjendezvous
time 57.407

>>>>>>>>>> Decision <<<<<<<
type Navigaton
rule :WaypointArrival-DepthComparison
level :Lowasseunient
action: demerime-.type-.otdqOpdt.ange
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time :57.718

>>> >>> Decision <<<< «<<<
type Navigation
rule :Waypoint-DisanceTine.Check
level Low..assessment
action: derne fneed oincreaespeed
time :57.891

>> >>>>> Decision <<<<<<<<<<
type :Navigaion
rule :Waypomntjnonitor
level :Low..assessment
action: assess-nexLwaypoin..an&..sequence
time :58.055

ISippers DisplayI

TEME in min-.secs 0-57
Overall Mdission Status >>> Abort-mission <<<
ManueveriLSmtus : severely-jestricted
EquipmentStatus :normal
Navigation-Status witin-olerance
Enviroment..status: normal
Specjdission..status: fleasible

I evolution :abortUansit
I depthstatus no-depth-change

I Last Command to Guidance: mark.on-top
I enmwtewaypoint :

I ObstecI

I Directon I Proximity I TypeI

89.0 far floating

356.0 far floating
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EQUIME4T DOWN I

Event Number: 13

Descuipdkon: mar-on-aborwaypoint

Tune 77.000

>>>>>>>> Decision C««
type :Navigation
rule :WaypointArsival-DepthComparison
level :Lowasssment
acton: determine-ype-of-depti..changc
time: 77.199

>>>>>>>> Decision ««c
type :Navigation
rule :Waypoint..DstanceTmeCheck
level :Low..assessment
action: desernmijomed-o-ncreae..speed
time : 77.375

>> >> >> Decision «<
type Naviation
role :Waypoint.monitor
k-vd : LoWmeSuMwnt
acton: aum iLwaypointnd..uequence
time: 77.539

Skpes DisplyI

TIME ininnajocs 1: 17
Overail Miulam Sas >>> AbonUission <
Maninug-tus : uawrsoce
Eqmitn s mmi

NavigmiauLSwfs widaijoernc
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EAvwonmemLtas: normal
SpecMission.status: feasible

levolution abor~transit
Idepth-status ascent

I Last Command to Guidance : transiting jobort-ndezvous
I enroute-waypoint : 2

I Obstacles I

I Direction I Proximity I Type I

89.0 far floating

356.0 far floating

I EQUIPMENT DOWN I

Event Number: 14

Description : mark-onabort.waypoint

Time : 98.000

>>>>>>>>>>>> Decision < <
type : Navigation
rule : WaypointAnival-DepthComparison
level : Lowj assnment
action: desmer -tyie-ofjqdepdhchange
time: 98.230

>>>>>>>>>>>> Decision< <<
type : Naviatim
rule : WaypoinDistanceTmeCbeck
level : Low_usement
acion: de nine-ifneedsojincrese-peed
time: 91406
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.~~7 -4; -, - .

>>>>>>>>> Decision <<<««««<<
type :Naviapion
rule :WaypoinLmonitor
level LAw-assessment
action: amsessnexLwaypoinLand-sequence
time :98.570

I Skipper's Display I

TIME in mjccsm 1:38
Overall Mission Stanus >>) Abort-nisslon <<<
ManueverinL-Stus : severelyesticted
Equipment.Status :normal
Navigmtiomt.Status :within-tolerance
Enviranment-stahM: normal

Spec-.Misuiout.status: feasible

I evolution :abortjtransit
I depth-status: asen

I Last Command to Guidance : underway
I enroute-waypoint :3

I Obstacles I

I Direction I Proximity I TypeI

89.0 far floating

356.0 far floating

I EQUIPMEENT DOWN I
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Event Number: 15

Description : mark..on-abcrLwaypoint

Tm 112.000

>> >>>>> Decision «««
Stype Navigation

rule :WaypomntArrival-DeptCoinparison
level :Loyw.,asseusment
action: deemnineype...ofdepth-d.chnge
tim : 112.24

>>> Decision «««
type Navigation
rule : WayponLUistanceTimeCheck
level :Low..assesument
action: determwineifneed-toincrease-speed
tim 112.425

) >>>> Decision «
type : Navigation
rule : Waypoint..monitor
lev el : Low-asseusment
action: assess-iext-.waypoint.and-sequence
tim 112.589

I Skippees DiplayI

TIME intnin-secs 1:52
Ovali Mission Status > Abortjnission «
Manmering-.Status: severely...esticted
EquipmenLSmts nomna
Navipato.LStamf withinjolerance
E m- ~u m: nomiaw
Spac.Mision.stats: fleasible
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I evakdon abowLmmsit
I deptit-staws : surface

I Last Command to Guidance: markontop
I e ute-waypoint 4

I Obstacles I

I Dkecto I Proximity I Type

89.0 far floating

356.0 far floating

I EQUEPMENT DOWN I

Event Number: 16

Description : mark-on-abort-waypoint

Tune 125.000

>>>>>Made it to Goak<<<<<<
At time : 125.0339999999997

10133 rules fired Run time is 128.4349999999995 seconds
78.91151165959467 rules per second
22 mean number of facts (30 maximum)
2 mean number of activations (8 maximum)
CLIPS> (exit)
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3. SCENARIO 3

CLIPS> (watch statistics)
CLIPS> (batch upload.bat)
CLIPS> (close)
FALSE
CLIPS> (clew)
CLIPS> (load skipper.clp)
CLIPS> (load maneuvering.clp)
(IIPS> (load navigation.clp)
CLIPS> (load sensucarlp)
(LIPS> (lioad enViroment.cip)
(LIPS> (reset)
CLIPS> (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINTS: All scenarios take place over the same set
of INITIAL waypoint coordinates.

EQUIPMENT: All equipment is simulated in the event file
Objects are created for each onboard equipment

SITUATIONS: All situations are also simulated in the event
file. For instance, an obstacle detection is
listed and this simulates the Obstacle Avoidance
DecisionMaker passing this information through
the interface to the Executor.

SCENARIO CHOICES: select number <Ret>
I WaypoinLHopping Only (transit)
2 Obstacle Avoidance
3 Vehicle Control System Failure
4 Obsacles and Environment Problems
5 Equipment Failures
6 Exit the Simulator
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>>> >> >>> Decision <«<<<<
typ Navigation
Mue :WaypointArrival-DepthCotnparison
level Lowasseasment
action: deterineypeofdepth.change
time :0.203

>>>>>>>>> Decision <<«««<<<
type :Navigation
rule : WaypointDisancTme_Check
level : Low-ajssessment
action: determine-if-need-tojincrasespeed
time :0.380

>>>>>> >> Decision ««««<<c<
WyK : Navigation
rule :WaypoifiLmonitor
level Lowassessment
action: assess-ext-waypoint..and-.sequence
time :0.543

Skcippers Display I

TIM in mnn.secs 0:10
Overal Mission Status >>> Continue Unrestricted <<<
Manuevering-Status : unrestricted
EquipmcnLStatus normal
NavigatiostStamu within-tolernmce
Envionmenusmtus: normal

Spec-Mison~status: feasible

I evolution :transit
deptia-status dive
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I Last Command to Guidance: underway
I enmute-waypoint : 1

I Obstacles I

I Direction I Proximity I Type

I EQUIPMENT DOWN I

Event Number: 1

Description : passing-waypoinL1

Tune : 10.000

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : WaypointArrival-DepthComparison
level : Lowassessment
action : determinetype.oLdepth-change
time : 10.246

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : WaypointDistanceTimeCheck
level : Lowassessment
action: determine.if needtoincrease-speed
time : 10.420

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : Waypointroonitor
level : Low-assessment
action: assess-next-waypointandsequence
time : 10.583
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I Skippers Display I

TME in minsecs 0:10
Overall Mission Status >>>> Continue-Unrestricted <<<<
ManuevainStatus : unrestricted
EquipmenLStatus normal
NaviptionStatus withinjtolerance
EnvitonmenLstatus: normal
Specjhissionstatus: feasible

Ievolution : transit
Idepth-status : dive

I Last Command to Guidance: mark-on-top
I enroute-waypoint : 2

I Obstacles I

I Direction I Proximity I Type

I EQUIPMENT DOWN I

Event Number: 2

Description : passing-waypoint_2

Time : 20.000

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : Navigation
rule : WaypointArrival-DepthComparison
level : Low.assessment
action: determine-typeof-depth-change
time : 20.616
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>>>>>>>>> Decision c
type Navigation
rule :WaypoinUistanceTime..Check
level :Low...assessmcnt
action: determine-if-need-tojincreasejeed
time : 20.793

>>> >>>>>> Decision <<<<<<<<<
type :Navigation
rule Waypoinunmonitor
levl Low-.assessment
action: asse -s.next-.waypoinLand-.sequenlce
time :20.957

I Sktipper's DisplayI

TIM in min-secs 0:20
Overall Mission Status > ContinueUnrestricted <<<
Manuevering...Status : unrestricted
Equipment..Status normal
NavigationStatus :within-tolerance

Envirnmenstatus: normal
Spec..Mission...status: feasible

I evolution transit
I depth-status :dive

I Last Command to Guidance : mark..on-op
I enroute-waypoint : 3

I Obstacles I

I Direction I Proximity I TypeI

A

I EQUVIPENT DOWN I
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Event Number: 3

Description: passing-.waypoint..3

ime :27.000

>)>>>>>>>>> Decision «c««««c<<<
typM Navigation
nile WaypointArrival-DephKoinpaison
level Low..asaesumnt
action: detruine-ype.ofdepth-change
time: 27.201

>>>>>>>> Decision ««««««<<<
qye Navigation
rule Waypoint..DistanceThm-.Check
lewel Low-.assessment
action determinejifneed-to-ncrease-speed
time :27.383

I Skipper's Display I

TMe in min..secs 0:27
Overall Mlission Status >>> Continue-Unrestricted c
ManueverznLStatus : unrestricted
Equipment..Status :normnal
Navigadtat..Sus: withinjolerance
Environmenitams: normal
Specjdission-tatus: feasible

I evolubon :transit
I depth-status dive

I Last Cbnmmand to Guidance: Increase-Speed
I enzuuwwaypoint :3

I ObstaclesI



I Direction I Proximity ITypeI

I EQUIPWENT DOWN I

>>>>>>>> Decision <<<<<< <<<<
type :Navigation
rule Waypoint-monitor
level Low...assessment
action: assessjaextwaypoint and-.sequence
time : 28.122

Event Number: 4

Description : Plane-conitrols-failure

Tune :35.000

>> >>> >> Decision <<<<<<<<<
type :Maneuvering
rule :Maneuverng-Status-.Assessment
level :maneuvering-assessment
action: change-overall-maneuvering-status
time :35.243

>> >> >> Decision <<«««««<<
type :System...Monitor
rule :ControlSystent.Failure
level Low
action: Pass-jnfo-o-Equip..Assessor
time : 35.40

>>>>>>>>> Decision <<««<<<
type :Sysu=m..Monivor
rule :EquipmenL.Status.Assessment
level :Assessment
action: Assessing-Status
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time 35.571

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type OveralMission
rule : OverallissionAssessor
level: High
action: Abon-mission
time : 35.740

>>>>>>>>>>>> Decision <<<<<<<<<<<<
type : OvraMission
rule : AbouiMission
level: Low
action: lock-satusjnreplan_route_toabor-mdezvous
time : 35.898

>>>>> Shutting Down for Dynamic Recovery <<<
>>>>> Transponder will function for 2 hours <<<
2931 rules fied Run time is 41.71299999999974 seconds
70.26586435883343 rules per second
16 mean number of facts (27 maximum)
2 mem number of activations (11 maximum)
CLEPS> (dribble-off)
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4. SCENARIO 4

CLIPS> (watch statistics)
CLIPS> (batch uploadbat)
CLIPS> (dloie)
FALSE

* (CLIPS> (clear)
CLIPS> (load skiperclp)
(LIPS> (load aeuuig-clp)
CLIPS> (load navigatioa.clp)
CLIPS> (load uensorcl~p)
CLIPS> (load environmentclp)
CLIPS> (rese)
CLIPS-- (run)

Welcome to the MISSION EXECUTOR DEMO

WAYPOINT: All scearos tak place over the same set
of INITIAL, waypoint coordinates.

EQUIPUMNT: All equipment is simulated in the event Mie
Objects ame created for each onboard equipment

SiUATIONS: Al situations are also simulated in the event
file. For instance, an obstacle detection is
Hused and this simulates the Obstacle Avoidance
DecisionMaker passing this information through
the interface to the Executor.

SCENARIO CHOICES: select number 4dtet>
I WaypointLaopping Only (transit)
2 Obstacle Avoidance
3 Vehicle Control System Failure
4 Obstacles and Environment Problems
5 Equipment Failures
6 Exit the Simulator
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>>>>>>>>> Decision «<c
type :Navigation
rule :WaypointArrival-DepthiCompuuison
level Lowassmunent
action: determinejype-.ofdepthshange
time :0.217

)>>>> Decision «««
type Navigation
rule :Waypoint-DistanceTime..Check
level :Low-.assessment
action: detenninejfjieedjto-ncreaspeed
time :0.392

>>> >>>>> Decision <<<< < <<
type :Navigation
rule :Waypom.inmonitor
level :Low-.assessment
action: assess-next-waypoinand-sequence
time :0.557

I Skppet's Display I

TMa in unin...secs 0:00
Overall Mission Status, >>, ContinueUnrestricted <
MdanueveinL-Status : unrestricted
Equipmnt.Status :normal
NavigtionStatus: witbin-tolerance
Bnvirometatu: normal

Spe...ision..status: feasible

I eouon :transit
I depOH-sats dive

I Last Ccmmand to Guidance: underway
I emuw-waypoint :1
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IObstaclesI

I Diretion I Proximity I TypeI

I EQUIPMENT DOWN I

------------- --*** ***** ************* *

Event Number: 1

Description : passing..waypomnt

Time :10.000

>>>>>>>> > Decision c«<
type :Navigation
rule :WaypointArrival-DepthComparison
level :Low-assessment
action: determine-type-ofl-depth-change
time 10.214

>> >>>>> Decsion «««
type :Navigation
rule :Waypoint-DistmnceTme..Check
level Low-..assessment
action: determine-if-need-to--ncrease.speed
time 10.388

) >>>> Decision «<< «««<<<
type :Navigation
rule :Waypoint.monitor
level :Low...assessment
action: assess-next-waypoin.and-sequence
time :10.552

SkippersDisplay I
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TMe in min...acs 0.10
Overall Mission Stau >>> Continue-Unrestnicted <C
Manuevering-Status : unresricted
Equipmen..Status :normal
Navigatiaua.Staus: withinjolerance
Enviranmentjtatus: normal

Spc.Mbis atus: feasible

I eouon mani
I depth-status :dive
I
I Last Command to Guidance: mark..on-top
I enroutewaypoint :2

I Obstacles

I Direction I Prioximity I Type I

I EQUIPMNT DOWN I

Event Number: 2

Description : obstacle-detected..auiormal-range

Time :27.000

Event Number: 3

Description : obstacle-.classified-as..new

lime :27.000

~>>>>>>>> Decision « « «
type :Maevin
rule :ObsadlodeectioiNyormiaLUmits
level :Low~aasuwmnt
action : classify-njorma.rng..obstacle-as-.new
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time :27.428

>> >> > Decision <<<<<<<<<
type Maneuvering
rule :Coilective..Obstacle...Assessment
level Low~assessment
action: assess..whtcr....preents -a-collision..danger-.and-.turn

*time 27.624

Event Number: 4

Description : obstacle-detected-at-normnal-range

Tune :37.000

Event Number: 5

Description : obstacle-detected-at~nomal-range

Time :37.000

>>> Decision <<<<<<<<
type :Maneuvering
rule :ObstaclIe.AetectonNormalLmits
level :Low..assessment
action: classify-.norma-range-obstacle-as-new
tim 37.475

EventNmbe: 6

Description : obacleclasfled.as-new

rum 40.000
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Event Number: 7

Descuiption : obstacle-update.jtevious-detect

Tune :40.000

>>> Decision <<<< < <<
type :Maneuvering
rule :Obstacle-Ulpdate
level :Lowjusessment
action: updae-.obstacle-status-rangebearingcollision-danger
time :40.843

Event Number: 8

Description : sea-tmp..does -not-nmatch..expjeading

Time :50.000

>> >>>>>> Decision <<<<<c<<<
type :Envfromentalworld
rule :Envhiroment-Assessor
level :Assessment
action: determei-nvironmien-status~jsuazarl
time: 50.256

Event Number: 9

Description : presure..out..of limits

Tume :60.000

>>. - Decision <<<< <<
qWp : Envunmental-wwrl
rule : Environment-Assessor
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leel Ansment
action: deter ine-ifenvironnmnsumssjazard
time 60.750

Event Number: 10

Description : gr-ndicates..abnormal-seaj-urbulence

time :65.000

>>>>> Decision «««
type EnvironmentaIworld
rule :EnvironentAssessor
level :Assessment
action: deterine-ifenvironmntnstatus-is,-hazard
time: 65.244

>>> >>>>> Decision ««<c
typ : Overall jfission
rule :OveraiLMissionAssessor
level :High
action: Abort-mission
time :65.411

>>> >> Decision««c«
WKp : Overall-AMission
rule :AbortMission
level :Low
action: lock..status-.and-replan-route-to...abortjmndezvous
time :65.569

>>>>>>>>> Decision c«<
type :Navigation
rule :WaypointArrival-DepthCampazison
level :Low..assessment
action: deamine-ype.pfepth-change
im 65.867
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type Navigation
rule : WaypointDistanceTimeCheck
level Low-assessment
action: determineifjneed-to-increase.speed
time: 66.040

>>>>>>>>>>>> Decision <<<< <<
type : Navigation
rule : Waypointmonitor
level : Low-assessment
action: assess-next-waypoinLandsequence
time 66.203

I Skipper's Display I

TIME in minsecs 1:05
Overall Mission Status >>>> Abortmission <<<<
ManueveringStatus : unrestricted
EquipmentStatus : normal
NavigationStatus : within-tolerance
Environment-status: major-deviation
SpecMissionstatus: feasible

I evolution : aborttransit
Idepth-status : no-depth-change
I ==

I Last Command to Guidance: transiting-to-abort-rendezvous
I enroute-waypoint I

I Obstacles I

I Direction I Proximity I Type I
82.0 far floating---

356.0 far floating
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I EQUIPMENT DOWN I

)>>>>> SeaTeSnsor c«<< <
>> SeaSateGyro<<«c

>>>>>> PressureTransducerc««<<<

Event Number: I1I

Description : passing..waypoint

Time :95.000

>>> Decision <c««««<<
type :Navigation
rule :WaypointArrival-DepthComparison
level :Low...assessment
action: deterine-type-ofdepth-.change
&we 95.225

>>> Decision <<<<<<<<<
type :Navigation
rule :Waypoint-DistanceTime-.Check
level :Low-assessment
action: determinejfneed-jo-increase-speed
time :95.399

>> >>>> Decision <<«««««<<
type :Navigation
rule :Waypoint-monitor
level :Low...assessment
action: assess-.next-waypoint.and..squence
time :95.565

I Skipper's DisplayI

TiMEin min-secs 1:35
Overall Mission Status >>> Abortjnission <<<<
Manuevering..Sttus: unrestricted
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Equipment.Status :normal
Navigaiion..Status: within-tolerance
ERvironICetstatus: major-deviation

Specjvfission-.status: feasible

I evolution :aborLuanst
I depth-status: ascent

I Last Command to Guidance : underway
I emroute-waypoint : 2

- ---- - - ----

I Obstacles

I Direction I Proximity I Type
82.0- far--- - --- ---- - - - --atn

33.0 far floating

I EQUIPMIENT DOWN I

>> SeaTerpSnsor««««<<
>>- >)'> SeaSaeGyrocc«««<

>> PressueTransducer ««««<

Event Number: 12

Description : passing-waypoint

Tme :115.000

>> >>>>>> Decision <<<<<<<<«
type :Navigation
rule :WaypointAnival-DepthComparison
level Lowassessment
action: des inetype-ofdepth-hange
time : 115.M4
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>>>>>>>>>>>> Decision <<<<<<<<<<<<
type Navigation
rule : WaypointDistance _me-Check
level Low-assessment
action: detcrminejneedto-increa._speed
time 115.417

>>>>>>>>>>>> Decision <<< <
ype: Navigation
rule : WaypoinLmonitor
level : Lowassessment
action: assess.next-waypoinLands.quence
time 115.582

I Skipper's Display I

TIME in min-secs 1:55
Overall Mission Status >>>> Abort_mission <<<<
ManueveringStatus : unrestricted
EquipmenLStatus : normal
NavigationStatus : within-tolerance
EnvirOnnLstatus: major.deviation
SpecMissionstatus: feasible

I evolution : abort.transit
I depth-status : ascent

I Last Conmmnd to Guidance: mark_ontop
I enroute-waypoint : 3

I Obstacles I

I Direction I Proximity I Type
82.0 far floating

356.0 far floating

I EQUIPMENT DOWN I
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>> SeaTempSensor<«<<
>> SeaSateGyro «<<<<
>> PressureTransducer««««<<

Event Number: 13

Description : passing-waypoinh

TIme :126.000

>>>>>>> Decision <<<<<< <<<<
type :Navigation
rule :WaypointArrival-DepthComparison
level :Low-assessment
action: determine-type...odepth-change
time :126.214

>> >>>> Decision ««c««c«<<<
type :Navigation
rule :WaypointjistanceTineCheck
level :Low-.assessment
action: determine-if-need-toincreasspeed
time :126.392

>> >>>>>> Decision <c«««««<<
tipe :Navigation
rule :Waypoint-monitor
level :Low..assessment
action: assess-ext.waypoint.and-sequence
time :126.557

Isktippet's Display I

TIME in min..jecs 2:06
Overall Mission Status >>> Abort..mission <<<
Manuevering-Status : unresvicted
Equppnen..Status :normal
Navigation..tatus: within-tolerance
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Envionment..status: major-&eviation
Spec...Miusion..status: feasible

I evolution :abort-tuansit
I depth-status :surface

I Last Command to Guidance: mark-on-top
I enroute-waypoint : 4

I ObstaclesI

I irctonI Proximity I TypeI

82.0 far floating

356.0 far floating

I EQUIPMENT DOWN I

>> SeaTempSensor<<c«<<
>>>>>> SeaStateGyro<<<

>> PressureTnansducerc<<<

Event Number: 14

Description : Goal~affival

Time :148.000

>>>>Made it to Goal<<<<<
At time : 148.0519999999997

13301 rules fired Run time is 150.860999999999 seconds
88.16725329939541 rules per second
20 mean number of facts (27 maximum)
2 mean number of activations (7 maximum)
CLIPS> (dribble-oft)
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5. SCENARIO 5

CIPS> (watch statistics)
aips> (batch uploat~bat)
CIPS> (clos)
FALSE4
CIPS> (Clear)
CIPS> (load skipper.clp)
CLPS> (lod maveing-clp)

DCIPS> (lod sefharclp)
CIPS> (lod envitomentclp)

aLPS> (rese)
CLPS> (u)

Welcom o the MISSION EXECUTO)R DEMO

WAYPOINT: All scearios take place over the samne set
of INIIAL waypomnt cosliates.

EQUIPMIENT:- AUl equipmnent is simulated in the event file
Objects are cteated for each onboard equipmnent

S1TUATIONS: AlD situations are also simulated in the event
file. For instance, an obstacle detection is
listed and this simulates the Obstacle Avoidance

Deciion~kerpassing this information throgh
the interface to the Execuor.

SCENARIO CHOICES: select number <Ret>
I WaypointHopint Only (trani)
2 Obstacle Avoidance
3 Vehkbl Contol System Failure
4 Obstacles and 1Env-irnmnt Pk'oblms
5 Equipment Failures



6 Exit the Simulawo

5

) >>>> Decision «c<~c
type Naviatiou
rule :WaypointArrival-DephCcepazison
level :Loyw..auesuent
action: rejple ie-ye-dept.change
time :0.202

>> >>> >> Decision «cc«
type :Navigation
rule :WaypoinLXistanceTme.Check
level :Loyw.assessment
action: deuit-en e e-oica spd
time :0.376

>> >>>>>> Decision c«
type Navigation
rule :Waypoint.monitor
level : Jow-.assessment
action: assess..next..waypoin~and...equence
time 0.539

1skippees Dsly I

TIME in min-secs 0:00
Overall Mission Status >>> ContinUme..zsticted <<<
Mlanuevering-.Staus : umuicied

Equlpent.tatus :normal
Navlion...wus :widuiluderance
Eaviunmeatnuzs: noral
Spec...Mission.staus: feasible

I evolution trmani
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I deptlh-satwa : dive

I LAUt Command to Guidance: underwy
I emwwaypoint I

I ObstdeI

I Diretio I Proximity I Type

I EQU r NDOWN I

Event Number: 1

Description: passingwaypona~j

T"ime : 10.000

>>> Decision «
type :Navigaton
rule :WaypointArriva-DeptaCoMpausouj
level : Iow..aeasment
action: dewmieypeofdeptchane
time : 10.216

>>> Decision (<
type :Navigaon
rule :Wayptin PisgancemeCheck
level :Low..assesauent
Actio: 'PPMinef.meu-o-Jncaue.uped
time : 10.390

>>>>>>>> Decision
rip Navigation
rule :WaypoaLomonitor

lvlLowuwsmt
acton: assehs axt..waypoint.andjeaquence
time : 10.553
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I skippet's Display I

TIME in min-.secs 0:10
Overall Mission Status >>> ComtinuejUnresticted <<<
Manuevering..Status : unrestricted

It EquipmenLStatus normal
Navigation-.Status :within-tolerance
Environment..tatus: normal

P4 Spec-Mission-.staus: feasible

I evolution transit
I depth-status dive

I Last Command to Guidance: inark-.on-top
I enroute-waypoint :2

I ObstaclesI

I Direction I Proximity I TypeI

I EQUIPMENT DOWN I

Event Number: 2

Description : passing-waypoint-2

Tme :20.000

>> >>> >>> Decision C «CC<

type :Navigation
rule :WaypoinhArrival-DepthComparison
level :Lowassessment
action: It P mnetype-of-deptli-hange
rime : 20.634
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>>>>>>>> > Decision ««<
type Navigation
rule :WaypointJistanceTime-.Check
level Low..asuessment
action: determine-jfned-.to-increaspeed
time : 20.811

>> >>> > Decision ««<
type Navigation
rule :Waypoin~mofitor
level: Lw-asusssment
action: uuessjiet.waypointand...equence
time :20.975

I Skipper's Display I

TIME in min...secs 0:20
Overall Mission Status >>> Continue-Umueticted <c
ManueverinL-Status : unrestricted
Equipment-Status :normal
NavigazionS.tatus :withinjolerance
Environment-status: normal
Spec-Mission-.status: feasible

I evolution :transit
I depth-status :dive

I Last Command to Guidance : mark..on-top
I enoute-waypoint :3

I ObstaclesI

I Direction I Proximity I TypeI

I EQU WENT DOWN I
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Event Number: 3

Description : passing-waypoint-3

Time :27.000

) >>>> Decision «««
type :Navigation
rule :WaypomntArrival-DepthComnparison
level :Low~suessment
action: etrine-type-ofjlepthshange
time: 27.209

>>> Decision «««
type :Navigation
rule :Waypoint...istanccTimeCheck
level :Low-assesament
action: determmejifjaeedjo-ncae.speed
time :27.389

I Skipper's Display I

TIME in min-.secs 0:27
Overall Mission Status >> Continue_.Unrestricted «
Manuevering-Status : unrestricted
EquipmcnLStatus :normal
Navigation-Status :within-olermnce
Environmcnt-ms:au normal
Spec..Mission-.status: feasible

I evolution :transit
I depth-status :dive

I Lost Comnmand to Guidlance : Increase-Speed
I enrot-waypoint :3

1 ObstaclesI

I Direction I Ptoximity I Type1
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I EQUIPMENT DOWN I

)> ) >>>> Decision <<<<<<<<<<
tylpe :Navigation
rule WaypoinLmonitor
level :LoDw..asueunent
action.: asuess-nexLwaypoinLalc-uequence
time : 28.129

Event Number: 4

Description: sonar-..has-failure-reaing

Time :35.000

>>>>>>>>> Decision <<<<<<<<<
type Syutcmjdonitor
rule :Sanarjailure
level: Low
action: Pauujinfoo...Equip..Assessor
tim 35.300

>>> > Decision <<<<c<<<
type :Systm..Monlmwr
rule :Equipnien~.Stm-.Assessnent
level Assessment
action: AsssngStuus
time :35.463

>>>>>>>>> Decision <«<<c<<<<
type :Overalzusion

level: High
action: ConiniUdssiC-irsiciW
time: 35.630
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>>>>> >> Decision <<<<<<<
type :Overalt..Mission
rule Continue..mission-restricted intial
level Assessment
action: Note-time-of-status-change
time :35.791

Event Number: 5

Description : passing-wayPoint_4

Time :55.000

>> >>> Decision "«<
type :Navigation
Mie :WaypointArrival-DepthComnparison
level :Low-assessment
action: determine-type..odepthschange
time :55.236

>>> >>>> > Decision «««
type :Navigation
rule :WaypoinLjDistanceTimeCheck
level :Low-assessment
action: deteimine-jfneed-o-ncrease.speed
time :55.419

1Skcippet's Display I

TIME in min..secs 0:55
Overall Mssion Status > Continue_withRestrictions <
Manuevering-.Satus.: unrestricted
EquipunenLStatus :equipment-critical
Navigation..Status :withinjolerance

Envinment..status: normal
Spec-.Mission..status: feaksible,

I evolution :transit
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I depthi-status no-depthi-change

I LASt Command to Guidance : Increase-Speed
I enroute-waypoint :4

1 Obstacles

I Direction I Proximity I TypeI

I EQUIPMENT DOWN I

>> FWD-sonar<<<«

>>> >> Decision <<«««««<<
type :Navigation
rule :Waypoint-.monitor
level :Low-assessment
action: assess-lext-.waypoinLan&.sequence
time :56.202

Event Number: 6

Description : soar..has-.failure-eading

Time :65.000

>> >>> >> Decision ««««««<<<
type System-.Monitor
rule :Sonr Critica
level low
action: Pass-nfo-o-Equip..Assessor
time: 65.26 4

>>>>>>>> Decision <<<<<<<
type :System..monitor
rule :Equipment..Status-.Assessment
level :Assessment
action: Assessing-.Status

208



time :65.426

>> >>>>> Decision «««
type :OverallMission
rule :Overall-Mission-.Assessor
level: High
action: Continuebission..withjrestrictions

j time: 65.5%6

>>> Decision ««c
type : OveraiLblission
rule : Continue-jnission-zestrictedjinitial
level : Assessment
action : Note-time-of-staus-change
time :65.754

Event Number: 7

Description : nxdder..has-failure-reading

Time :68.000

>>>>> >> Decision «««
type :Maneuvering
rule :Maneuvering-Status..Assessment
level :maneuvering-assessment
action: change-overall-maneuvering-status
time :68.303

>> >>>>> Decision c«<
tye OveralMiuuion
rule :Overall-Mission-.Asseusor
level: High
action: Abort-mission
time :68.470
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>>>>>>>>>>>> Decision <<<<<<<<
type : Overall-Mission
rle : Abort_Mission
level: Low
action: locksasandjeprutetoab ndevous
time : 68.633

>>>>> Shutting Down for Dynamic Recovery <<<
>>>>> Transponder will function for 2 hours <<<
5761 rules find Run time is 72.20900000000074 seconds
79.78229860543618 rules per second
18 mean number of facts (29 maximum)
2 mean number of activations (12 maximum)
CLIPS> (dribble-off)

210



INITIAL DISTRIBUTION LIST

No of Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Dudl" Knox Library 2
Code 052
Naval Postgraduate School
Monterey, California 93943-5002

3. Chairman, Code CS 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5002

4. Dr. Y. Lee, Code CS/Le 7
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5002

5. Chairman, Code 69 Hy
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93943-5002

6. LT W. P. Wilkinson, USN 2
Department Head Class 121
Surface Warfare Officer School Command
NETC Newport Rhode Island 02841-5012

211


